OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 537–546

Nonreciprocal optical diffraction by a single layer of gyromagnetic cylinders

Tian-Jing Guo, Teng-Fei Li, Mu Yang, Hai-Xu Cui, Qing-Hua Guo, Xue-Wei Cao, and Jing Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 537-546 (2014)
http://dx.doi.org/10.1364/OE.22.000537


View Full Text Article

Enhanced HTML    Acrobat PDF (1963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the diffraction of optical waves by a single layer of gyromagnetic cylinders. We show that a nonvanishing rotating dipole momentum is excited in a single gyromagnetic cylinder because of the classic analog of the Zeeman effect on photonic angular momentum states (PAMSs). Consequently, different collective dipole modes are excited in a gyromagnetic cylinder array at opposite incident angles. Nonreciprocal optical diffraction effects can be observed, where the transmission and reflection coefficients depend on the sign of the incident angle. A novel phenomenon of nonreciprocal negative directional transmission is demonstrated and numerically analyzed. This work highlights the potential of PAMSs in manipulating the propagation of optical waves for various applications.

© 2014 Optical Society of America

OCIS Codes
(020.7490) Atomic and molecular physics : Zeeman effect
(160.3820) Materials : Magneto-optical materials
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: October 16, 2013
Revised Manuscript: December 10, 2013
Manuscript Accepted: December 13, 2013
Published: January 3, 2014

Citation
Tian-Jing Guo, Teng-Fei Li, Mu Yang, Hai-Xu Cui, Qing-Hua Guo, Xue-Wei Cao, and Jing Chen, "Nonreciprocal optical diffraction by a single layer of gyromagnetic cylinders," Opt. Express 22, 537-546 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-537


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  2. J. B. Khurgin, “Optical isolating action in surface plasmon polaritons,” Appl. Phys. Lett. 89, 251115 (2006). [CrossRef]
  3. M. Soljačić, C. Luo, J. D. Joannopoulos, S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]
  4. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012). [CrossRef]
  5. A. M. Merzlikin, A. P. Vinogradov, M. Inoue, A. B. Granovsky, “Giant photonic Hall effect in magnetophotonic crystals,” Phys. Rev. E 72, 046603 (2005). [CrossRef]
  6. F. D. M. Haldane, S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008). [CrossRef] [PubMed]
  7. Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008). [CrossRef] [PubMed]
  8. Z. Yu, G. Veronis, Z. Wang, S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008). [CrossRef] [PubMed]
  9. A. B. Khanikaev, S. H. Mousavi, G. Shvets, Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett. 105, 126804 (2010). [CrossRef] [PubMed]
  10. Y. Hadad, B. Z. Steinberg, “Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides,” Phys. Rev. Lett. 105, 233904 (2010). [CrossRef]
  11. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011). [CrossRef] [PubMed]
  12. Y. Mazor, B. Z. Steinberg, “Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding,” Phys. Rev. B 86, 045120 (2012). [CrossRef]
  13. A. A. Asatryan, L. C. Botten, K. Fang, S. Fan, R. C. McPhedran, “Local density of states of chiral Hall edge states in gyrotropic photonic clusters,” Phys. Rev. B 88, 035127 (2013). [CrossRef]
  14. Z. Yu, S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]
  15. D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, S. Y. Zhu, “Optical diode made from a moving photonic crystal,” Phys. Rev. Lett. 110, 093901 (2013). [CrossRef] [PubMed]
  16. W. J. Chen, Z. H. Hang, J. W. Dong, X. Xiao, H. Z. Wang, C. T. Chan, “Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking,” Phys. Rev. Lett. 107, 023901 (2011). [CrossRef] [PubMed]
  17. Y. Hadad, Y. Mazor, B. Z. Steinberg, “Green’s function theory for one-way particle chains,” Phys. Rev. B 87, 035130 (2013). [CrossRef]
  18. J. Wang, K. H. Fung, H. Y. Dong, N. X. Fang, “Zeeman splitting of photonic angular momentum states in a gyromagnetic cylinder,” Phys. Rev. B 84, 235122 (2011). [CrossRef]
  19. Q. H. Guo, M. Kang, T. F. Li, H. X. Cui, J. Chen, “Slow light from sharp dispersion by exciting dark photonic angular momentum states,” Opt. Lett. 38, 250–252 (2013). [CrossRef] [PubMed]
  20. Q. H. Guo, M. Yang, T. F. Li, T. J. Guo, H. X. Cui, M. Kang, J. Chen, “Circular polarizer via selective excitation of photonic angular momentum states in metamaterials,” Appl. Phys. Lett. 102, 211906 (2013). [CrossRef]
  21. M. Yang, T. F. Li, Q. W. Sheng, T. J. Guo, Q. H. Guo, H. X. Cui, J. Chen, “Manipulation of dark photonic angular momentum states via magneto-optical effect for tunable slow-light performance,” Opt. Express 21, 25035–25044 (2013). [CrossRef] [PubMed]
  22. J. Du, Z. Lin, S. T. Chui, W. Lu, H. Li, A. Wu, Z. Sheng, J. Zi, X. Wang, S. Zou, F. Gan, “Optical beam steering based on the symmetry of resonant modes of nanoparticles,” Phys. Rev. Lett. 106, 203903 (2011). [CrossRef] [PubMed]
  23. J. Du, Z. Lin, S. T. Chui, G. Dong, W. Zhang, “Nearly total omnidirectional reflection by a single layer of nanorods,” Phys. Rev. Lett. 110, 163902 (2013). [CrossRef] [PubMed]
  24. A. Devilez, B. Stout, N. Bonod, “Mode-balancing far-field control of light localization in nanoantennas,” Phys. Rev. B 81, 245128 (2010). [CrossRef]
  25. K. B. Crozier, E. Togan, E. Simsek, T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15, 17482–17493 (2007). [CrossRef] [PubMed]
  26. T. F. Li, T. J. Guo, H. X. Cui, M. Yang, M. Kang, Q. H. Guo, J. Chen, “Guided modes in magneto-optical waveguides and the role in resonant transmission,” Opt. Express 21, 9563–9572 (2013). [CrossRef] [PubMed]
  27. M. Liu, X. Zhang, “Plasmon-boosted magneto-optics,” Nat. Photonics 7, 429–430 (2013). [CrossRef]
  28. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599–1604 (2013). [CrossRef] [PubMed]
  29. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011). [CrossRef]
  30. J. Wu, B. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. Hong, A. A. Bettiol, H. O. Moser, “Free-standing terahertz chiral meta-foils exhibiting strong optical activity and negative refractive index,” Appl. Phys. Lett. 103, 141106 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited