OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 633–645

An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator

Naoya Matsumoto, Shigetoshi Okazaki, Yasuko Fukushi, Hisayoshi Takamoto, Takashi Inoue, and Susumu Terakawa  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 633-645 (2014)
http://dx.doi.org/10.1364/OE.22.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (2969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose high-quality generation of uniform multiple fluorescence spots (MFS) with a spatial light modulator (SLM) and demonstrate uniform laser scanning in multifocal multiphoton microscopy (MMM). The MFS excitation method iteratively updates a computer-generated hologram (CGH) using correction coefficients to improve the fluorescence intensity distribution in a dye solution whose consistency is uniform. This simple correction method can be applied for calibration of the MMM before observation of living tissue. We experimentally demonstrate an improvement of the uniformity of a 10 × 10 grid of MFS by using a dye solution. After the calibration, we performed laser scanning with two-photon excitation to observe fluorescent polystyrene beads, as well as the gastric gland of a guinea pig specimen.

© 2014 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 2, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 17, 2013
Published: January 6, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Naoya Matsumoto, Shigetoshi Okazaki, Yasuko Fukushi, Hisayoshi Takamoto, Takashi Inoue, and Susumu Terakawa, "An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator," Opt. Express 22, 633-645 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science248, 73–76 (1990). [CrossRef] [PubMed]
  2. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23, 3139–3149 (2006). [CrossRef]
  3. J. Bewersdorf, A. Egner, and S. W. Hell, “Multifocal Multi-photon Microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., 3rd ed. (Springer, 2006), 550–560. [CrossRef]
  4. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express15, 10991–10998 (2007). [CrossRef] [PubMed]
  5. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett.28, 1918–1920 (2003). [CrossRef] [PubMed]
  6. T. Nielsen, M. Fricke, D. Hellweg, and P. Andersen, “High efficiency beam splitter for multifocal mutiphoton microscopy,” Journal of Microscopy201, 368–376 (2000). [CrossRef]
  7. Y. Shao, W. Qin, H. Lin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Multifocal multiphoton microscopy based on a spatial light modulator,” Appl. Phys. B107, 653–657 (2012). [CrossRef]
  8. S. Coelho, S. Poland, N. Krstajic, D. Li, J. Moneypenny, R. Walker, D. Tyndall, T. Ng, R. Henderson, and S. Ameer-Beg, “Multifocal multiphoton microsopy with adaptive optical correction,” Proc. SPIE8588, 858817 (2013). [CrossRef]
  9. Y. Hayasaki, T Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett.87, 031101 (2005). [CrossRef]
  10. U. Mahlab, J. Rosen, and J. Shamir, “Iterative generation of holograms on spatial light modulators,” Opt. Lett.15, 556–558 (1990). [CrossRef] [PubMed]
  11. J. Rosen, L. Shiv, J. Stein, and J. Shamir, “Electro-optic hologram generation on spatial light modulators,” J. Opt. Soc. Am. A9, 1159–1166 (1992). [CrossRef]
  12. N. Yoshikawa, M. Itoh, and T. Yatagai, “Adaptive computer-generated hologram using interpolation method,” Opt. Rev.4, A161–A163 (1997). [CrossRef]
  13. N. Matsumoto, T. Inoue, T. Ando, Y. Takiguchi, Y. Ohtake, and H. Toyoda, “High-quality generation of a multispot pattern using a spatial light modulator with adaptive feedback,” Opt. Lett.37, 3135–3137 (2012). [CrossRef] [PubMed]
  14. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007). [CrossRef] [PubMed]
  15. O. Ripoll, V. Kettunen, and H. P. Herzig, “Review of iterative Fourier-transform algorithms for beam shaping applications,” Opt. Eng.43, 2549–2556 (2004). [CrossRef]
  16. D. Prongue, H. P. Herzig, R. Dandliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt.31, 5706–5711 (1992). [CrossRef] [PubMed]
  17. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation,” Proc. SPIE6487, 64870Y (2007). [CrossRef]
  18. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A25, 1642–1651 (2008). [CrossRef]
  19. K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, ”Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express15, 11658–11678 (2007). [CrossRef] [PubMed]
  20. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt.33, 2804–2811 (1994). [CrossRef] [PubMed]
  21. E. Ronzitti, M. Guillon, V. D. Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express20, 17843–17855 (2012). [CrossRef] [PubMed]
  22. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal modulator,” Appl. Opt.46, 5917–5923 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited