OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 661–666

Thermal stress implications in athermal TiO2 waveguides on a silicon substrate

Jock Bovington, Rui Wu, Kwang-Ting Cheng, and John E. Bowers  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 661-666 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ring resonators with TiO2 core confinement factors from 0.07 to 0.42 are fabricated and measured for thermal sensitivity achieving −2.9 pm/K thermal drift in the best case. Materials used are CMOS compatible (TiO2, SiO2 and Si3N4) on a Si substrate. The under discussed role of stress in thermo-optic behavior is clearly observed when contrasting waveguides buried in SiO2 to those with etched sidewalls revealed to air. Multiphysics simulations are conducted to provide a theoretical explanation of this phenomenon in contrast to the more widely reported theories on thermo-optic behavior dominated by confinement factor.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3130) Materials : Integrated optics materials
(160.6840) Materials : Thermo-optical materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: September 30, 2013
Revised Manuscript: November 23, 2013
Manuscript Accepted: December 6, 2013
Published: January 6, 2014

Jock Bovington, Rui Wu, Kwang-Ting Cheng, and John E. Bowers, "Thermal stress implications in athermal TiO2 waveguides on a silicon substrate," Opt. Express 22, 661-666 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Kim, B. G. You, H. J. Lee, and T. H. Rhee, “Athermal AWG multiplexer/demultiplexer for E/C-band WDM-PON application,” in 2007 Asia Opt. Fiber Commun. Optoelectron. Conf. 2 (IEEE, 2007), pp. 330–332.
  2. N. Ooba, Y. Hibino, Y. Inoue, A. Sugita, “Athermal silica-based arrayed-waveguide grating multiplexer using bimetal plate temperature compensator,” Electron. Lett. 36(21), 1800–1801 (2000). [CrossRef]
  3. Y. Hibino, M. Abe, T. Tanaka, A. Himeno, J. Albert, D. C. Johnson, K. O. Hill, “Temperature-insensitive UV-induced Bragg gratings in silica-based planar lightwave circuits on Si,” Electron. Lett. 35(21), 1844–1845 (1999). [CrossRef]
  4. H. Huang, S.-T. Ho, D. Huang, Y. Tu, W. Liu, “Design of temperature-independent arrayed waveguide gratings based on the combination of multiple types of waveguide,” Appl. Opt. 49(16), 3025–3034 (2010). [CrossRef] [PubMed]
  5. H. Tanobe, Y. Kondo, Y. Kadota, K. Okamoto, Y. Yoshikuni, “Temperature insensitive arrayed waveguide gratings on InP substrates,” IEEE Photonics Technol. Lett. 10(2), 235–237 (1998). [CrossRef]
  6. M. Uenuma, T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009). [CrossRef] [PubMed]
  7. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18(17), 17631–17639 (2010). [CrossRef] [PubMed]
  8. P. Alipour, A. Atabaki, A. Eftekhar, and A. Adibi, “Athermal performance in titania-clad microring Resonators on SOI,” in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IMC6. [CrossRef]
  9. F. Qiu, A. M. Spring, F. Yu, S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013). [CrossRef]
  10. S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21(12), 13958–13968 (2013). [CrossRef] [PubMed]
  11. B. Guha, J. Cardenas, M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013). [CrossRef] [PubMed]
  12. T. D. Visser, H. Blok, B. Demeulenaere, D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33(10), 1763–1766 (1997). [CrossRef]
  13. M. Huang, X. Yan, “Thermal-stress effects on the temperature sensitivity of optical waveguides,” J. Opt. Soc. Am. B 20(6), 1326–1333 (2003). [CrossRef]
  14. A. Arbabi, L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013). [CrossRef] [PubMed]
  15. C. Ottermann, K. Bange, “Correlation between the density of TiO2 films and their properties,” Thin Solid Films 286(1–2), 32–34 (1996). [CrossRef]
  16. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003). [CrossRef]
  17. C. Ottermann, R. Kuschnereit, O. Anderson, P. Hess, K. Bange, “Young’s modulus and density of thin TiO2 films produced by different methods,” Mater. Res. Soc. 436, 251–256 (1996). [CrossRef]
  18. “Stress-optical effects with generalized plane strain.” COMSOL Multiphysics 4.3a (2012).
  19. A. Khan, J. Philip, P. Hess, “Young’s modulus of silicon nitride used in scanning force microscope cantilevers,” J. Appl. Phys. 95(4), 1667–1672 (2004). [CrossRef]
  20. National Physical Laboratory Kaye and Laby Table of Physical and Chemical Constants, Version 1.1,(2010), http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html . Accessed Sept. 4, 2013.
  21. C.-C. Lee, C.-L. Tien, W.-S. Sheu, C.-C. Jaing, “An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films,” Rev. Sci. Instrum. 72(4), 2128–2133 (2001). [CrossRef]
  22. P. Temple-Boyer, C. Rossi, E. Scheid, “Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia,” J. Vac. Sci. Technol. A 16(4), 2003–2007 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited