OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 699–706

A side-illuminated plasmonic planar lens

Yang Gao, Jianlong Liu, Kai Guo, Yachen Gao, and Shutian Liu  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 699-706 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1922 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Planar lens based on nanoscale slits has been demonstrated theoretically and experimentally. In this paper, we propose a 2D model of a similar planar lens but with side-illumination. The lens consists of a main bus waveguide to transport plasmonic wave and grooves functioning as antennas. The shapes and filling materials of the waveguide and grooves are assumed to be invariant in the third direction. The phase retardation needed for wavefront shaping comes from the transverse propagation of the plasmonic wave in the waveguide and the well-designed groove positions. The concept is applied to the design of planar lenses and axicons. The simulation results demonstrate that such structures can work as good diffractive elements. The side-illumination property of such structure enables the potential integration of lens on chip.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: November 4, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 21, 2013
Published: January 6, 2014

Yang Gao, Jianlong Liu, Kai Guo, Yachen Gao, and Shutian Liu, "A side-illuminated plasmonic planar lens," Opt. Express 22, 699-706 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  3. T. Xu, C. L. Du, C. T. Wang, X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91,201501 (2007). [CrossRef]
  4. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef] [PubMed]
  5. T. Xu, C. T. Wang, C. L. Du, X. G. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008). [CrossRef] [PubMed]
  6. Q. F. Zhu, D. Y. Wang, X. H. Zheng, Y. Zhang, “Optical lens design based on metallic nanoslits with variant widths,” Appl. Opt. 50, 1879–1883 (2011). [CrossRef] [PubMed]
  7. Q. F. Zhu, J. S. Ye, D. Y. Wang, B. Y. Gu, Y. Zhang, “Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm,” Opt. Express 19, 9512–9522 (2011). [CrossRef] [PubMed]
  8. H. Pang, H. T. Gao, Q. L. Deng, S. Y. Yin, Q. Qiu, C. L. Du, “Multi-focus plasmonic lens design based on holography,” Opt. Express 21, 18689–18696 (2013). [CrossRef] [PubMed]
  9. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013). [CrossRef] [PubMed]
  10. L. Verslegers, P. B. Catrysse, Z. Yu, S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95,071112 (2009). [CrossRef]
  11. J. Dionne, L. Sweatlock, H. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73,035407 (2006). [CrossRef]
  12. B. Yun, G. Hu, Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metalin-sulatormetal waveguide,” J. Phys. D: Appl. Phys. 43,385102 (2010). [CrossRef]
  13. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  14. A. Hosseini, Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef]
  15. J. Q. Xi, M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill, T. Gessmann, E. F. Schubert, “Omnidirectional reector using nanoporous SiO2 as a low-refractive-index material,” Opt. Lett. 30, 1518–1520 (2005). [CrossRef] [PubMed]
  16. P. Ruffieux, T. Scharf, H. P. Herzig, R. Volkel, K. J. Weible, “On the chromatic aberration of microlenses,” Opt. Express 14, 4687–4694 (2006). [CrossRef] [PubMed]
  17. Y. Gao, J. L. Liu, X. R. Zhang, Y. X. Wang, Y. L. Song, S. T. Liu, Y. Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Opt. Express 20, 1320–1329 (2012). [CrossRef] [PubMed]
  18. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12, 4932–4936 (2012). [CrossRef] [PubMed]
  19. Y. Li, B. Liang, Z. M. Gu, X. Y. Zou, J. C. Cheng, “Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces,” Sci. Rep. 3,2546 (2013). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited