OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 847–858

Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene

Daniel R. Mason, Sergey G. Menabde, and Namkyoo Park  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 847-858 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transverse-electric (TE) plasmons are a unique and unusual aspect of graphene’s plasmonic response that are predicted to manifest when the sign of imaginary part of conductivity changes to negative near the spectral onset of interband transitions. Although thus far, a feasible platform for the direct experimental detection of TE plasmons at finite temperature is yet to be suggested. Here we analyze the dynamics of Otto-Kretschmann excitation of TE plasmons in graphene. We show that TE plasmons supported by graphene in an Otto configuration unusually exhibit a cutoff thickness between the coupling prism and the graphene layer that forbids their efficient coupling to an incident wave in the case of a single-layer graphene at typical finite temperatures. In contrast, significantly increased coupling in the case of an N-layer graphene insulator stack, owing to an N-fold increase of the effective graphene conductivity as the insulator thickness approaches zero, is predicted to provide a TE plasmon resonance that is easily detectable at room temperature.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(310.2790) Thin films : Guided waves
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: November 25, 2013
Revised Manuscript: December 26, 2013
Manuscript Accepted: December 28, 2013
Published: January 7, 2014

Daniel R. Mason, Sergey G. Menabde, and Namkyoo Park, "Unusual Otto excitation dynamics and enhanced coupling of light to TE plasmons in graphene," Opt. Express 22, 847-858 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009). [CrossRef] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009). [CrossRef]
  4. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  5. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]
  6. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008). [CrossRef] [PubMed]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008). [CrossRef] [PubMed]
  9. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]
  10. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85(8), 081405(R) (2012). [CrossRef]
  11. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012). [CrossRef] [PubMed]
  12. S. Thongrattanasiri, F. H. L. Koppens, F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef] [PubMed]
  13. G. Pirruccio, L. Martín Moreno, G. Lozano, J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013). [CrossRef] [PubMed]
  14. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009). [CrossRef] [PubMed]
  15. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J. B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013). [CrossRef]
  16. A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photonics 7(11), 892–896 (2013). [CrossRef]
  17. X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7(11), 883–887 (2013). [CrossRef]
  18. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011). [CrossRef] [PubMed]
  19. M. Liu, X. Yin, X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012). [CrossRef] [PubMed]
  20. C. C. Lee, S. Suzuki, W. Xie, T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264–5269 (2012). [CrossRef] [PubMed]
  21. S. J. Koester, M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012). [CrossRef]
  22. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012). [CrossRef] [PubMed]
  23. F. Xing, Z. B. Liu, Z. C. Deng, X. T. Kong, X. Q. Yan, X. D. Chen, Q. Ye, C. P. Zhang, Y. S. Chen, J. G. Tian, “Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor,” Sci Rep 2, 908 (2012). [CrossRef] [PubMed]
  24. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011). [CrossRef]
  25. Y. V. Bludov, M. I. Vasilevskiy, N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112(8), 084320 (2012). [CrossRef]
  26. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
  27. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012). [CrossRef] [PubMed]
  28. F. H. L. Koppens, D. E. Chang, F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011). [CrossRef] [PubMed]
  29. C. Cocchi, D. Prezzi, A. Ruini, E. Benassi, M. J. Caldas, S. Corni, E. Molinari, “Optical excitations and field enhancement in short graphene nanoribbons,” J. Phys. Chem. Lett. 3(7), 924–929 (2012). [CrossRef]
  30. S. Thongrattanasiri, F. J. García de Abajo, “Optical field enhancement by strong plasmon interaction in graphene nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013). [CrossRef] [PubMed]
  31. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013). [CrossRef] [PubMed]
  32. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009). [CrossRef]
  33. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012). [PubMed]
  34. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012). [PubMed]
  35. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]
  36. G. W. Hanson, A. B. Yakovlev, A. Mafi, “Excitation of discrete and continuous spectrum for a surface conductivity model of graphene,” J. Appl. Phys. 110(11), 114305 (2011). [CrossRef]
  37. S. A. Mikhailov, K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007). [CrossRef] [PubMed]
  38. M. Jablan, H. Buljan, M. Soljačić, “Transverse electric plasmons in bilayer graphene,” Opt. Express 19(12), 11236–11241 (2011). [CrossRef] [PubMed]
  39. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, Inc., , 2005), Chap. 11.
  40. O. V. Kotov, M. A. Kol’chenko, Y. E. Lozovik, “Ultrahigh refractive index sensitivity of TE-polarized electromagnetic waves in graphene at the interface between two dielectric media,” Opt. Express 21(11), 13533–13546 (2013). [CrossRef] [PubMed]
  41. G. Gómez-Santos, T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011). [CrossRef]
  42. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011). [CrossRef]
  43. A. Gutiérrez-Rubio, T. Stauber, and F. Guinea, “Transverse current response of graphene at finite temperature, plasmons and absorption,” arXiv:1307.2024 (2013).
  44. A. Otto, “Excitation of nonradiative surface waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968). [CrossRef]
  45. Yu. V. Bludov, A. Ferreira, N. M. R. Peres, M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B 27(10), 1341001 (2013). [CrossRef]
  46. J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, E. H. Conrad, “Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene,” Phys. Rev. Lett. 100(12), 125504 (2008). [CrossRef] [PubMed]
  47. I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. I. Yeom, K. Lee, Y. U. Jeong, F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102(19), 191109 (2013). [CrossRef]
  48. M. A. K. Othman, C. Guclu, F. Capolino, “Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition,” J. Nanophotonics 7(1), 073089 (2013). [CrossRef]
  49. B. Wunsch, T. Stauber, F. Sols, F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8(12), 318 (2006). [CrossRef]
  50. E. H. Hwang, S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75(20), 205418 (2007). [CrossRef]
  51. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008). [CrossRef]
  52. E. Y. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996). [CrossRef]
  53. M. L. Gorodetsky, V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999). [CrossRef]
  54. R. Naraoka, K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sensor Actuat. Biol. Chem. 107, 952–956 (2005).
  55. J. Homola and M. Piliarik, “Surface Plasmon Resonance (SPR) Sensors,” in Surface Plasmon Resonance Based Sensors, J. Homola, ed. (Springer, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited