OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 908–915

Dual detection of ultraviolet and visible lights using a DNA-CTMA/GaN photodiode with electrically different polarity

M. Siva Pratap Reddy, Bong-Joong Kim, and Ja-Soon Jang  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 908-915 (2014)
http://dx.doi.org/10.1364/OE.22.000908


View Full Text Article

Enhanced HTML    Acrobat PDF (2360 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated the dual-detectable DNA-CTMA/n-GaN photodiode (DG-PD) for ultraviolet and visible lights. Halogen and UV lamps are employed to recognize the visible and UV wavelength, respectively. The DG-PD under dark condition has a negative-bias shift of current-voltage (I-V) curves by 0.78 V compared to reference diode without DNA. However, the I-V curves move towards positive bias side by 0.75 V and 1.02 V for the halogen- and UV-exposed photodiode, respectively. These cause electrically different polarity and amount for halogen- and UV-induced photocurrents, indicating that the DNA-CTMA on n-GaN is quite effective for recognizing visible and UV lights as a dual-detectable photodiode. The formation and charge transport mechanisms are also discussed.

© 2014 Optical Society of America

OCIS Codes
(230.5160) Optical devices : Photodetectors
(250.0250) Optoelectronics : Optoelectronics
(250.2080) Optoelectronics : Polymer active devices

ToC Category:
Detectors

History
Original Manuscript: November 6, 2013
Revised Manuscript: December 5, 2013
Manuscript Accepted: December 31, 2013
Published: January 8, 2014

Citation
M. Siva Pratap Reddy, Bong-Joong Kim, and Ja-Soon Jang, "Dual detection of ultraviolet and visible lights using a DNA-CTMA/GaN photodiode with electrically different polarity," Opt. Express 22, 908-915 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Phys. Status Solidi, B Basic Res. 244(8), 2859–2877 (2007). [CrossRef]
  2. T. Mueller, F. Xia, P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010). [CrossRef]
  3. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013). [CrossRef]
  4. J. Wu, Z. Li, D. Shao, M. O. Manasreh, V. P. Kunets, Z. M. Wang, G. J. Salamo, B. D. Weaver, “Multicolor photodetector based on GaAs quantum rings grown by droplet epitaxy,” Appl. Phys. Lett. 94(17), 171102 (2009). [CrossRef]
  5. E. H. Steenbergen, M. J. DiNezza, W. H. G. Dettlaff, S. H. Lim, Y.-H. Zhang, “Optically-addressed two-terminal multicolor photodetector,” Appl. Phys. Lett. 97(16), 161111 (2010). [CrossRef]
  6. Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3(3), 737–743 (2009). [CrossRef] [PubMed]
  7. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules,” Nature 403(6770), 635–638 (2000). [CrossRef] [PubMed]
  8. B. H. Mahmoud, C. L. Hexsel, I. H. Hamzavi, H. W. Lim, “Effects of visible light on the skin,” Photochem. Photobiol. 84(2), 450–462 (2008). [CrossRef] [PubMed]
  9. S. Delaney, J. K. Barton, “Long-range DNA charge transport,” J. Org. Chem. 68(17), 6475–6483 (2003). [CrossRef] [PubMed]
  10. J.-S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN-GaN superlattice,” Appl. Phys. Lett. 93(8), 081118 (2008). [CrossRef]
  11. M.-L. Lee, T. S. Mue, F. W. Huang, J. H. Yang, J. K. Sheu, “High-performance GaN metal-insulator-semiconductor ultraviolet photodetectors using gallium oxide as gate layer,” Opt. Express 19(13), 12658–12663 (2011). [CrossRef] [PubMed]
  12. J. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009). [CrossRef]
  13. S.-M. Kim, Y.-M. Yu, J.-H. Baek, S.-R. Jeon, H.-J. Ahn, J.-S. Jang, “Plasma-induced damage influence on the n-contact properties and device performance of ultraviolet InGaN/AlGaN light-emitting diodes,” J. Electrochem. Soc. 154(5), H384–H388 (2007). [CrossRef]
  14. J.-S. Jang, T.-Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys. 88(5), 3064–3066 (2000). [CrossRef]
  15. http://www.sigmaaldrich.com
  16. R. K. Gupta, A. A. Al-Ghamdi, O. Al-Hartomy, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, “Series resistance controlling photosensor of Ag/DNA/p-Si/Al diode,” Synth. Met. 162(11–12), 981–987 (2012). [CrossRef]
  17. C. H. Wohlgamuth, M. A. McWilliams, J. D. Slinker, “DNA as a molecular wire: Distance and sequence dependence,” Anal. Chem. 85(18), 8634–8640 (2013). [CrossRef] [PubMed]
  18. R. A. Marcus, N. Sutin, “Electron transfers in chemistry and biology,” Biochim. Biophys. Acta 811(3), 265–322 (1985). [CrossRef] [PubMed]
  19. M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA,” Chem. Phys. 281(2–3), 393–408 (2002). [CrossRef]
  20. J. Jortner, M. Bixton, A. A. Voityuk, N. Rosch, “Superexchange mediated charge hopping in DNA,” J. Phys. Chem. 106(33), 7599–7606 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited