OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 916–924

Photonic crystal nanocavity with a Q-factor of ~9 million

Hiroshi Sekoguchi, Yasushi Takahashi, Takashi Asano, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 916-924 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated absorption losses due to surface water adsorbed on the surface of silicon heterostructure nanocavities with quality (Q) factors of several million. Measurements performed while changing the ambient humidity that the nanocavity is exposed to show that the Q value depends linearly on humidity. We also reveal that chemical treatment to change the degree of hydrophilicity of the surface results in a drastic increase of Q; we have obtained an experimental value of 9 million, which represents a new record for a heterostructure nanocavity. We analytically determine the absolute value of absorption loss by exploiting the degree of fluctuation of Q values between different samples.

© 2014 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(240.6700) Optics at surfaces : Surfaces
(140.3948) Lasers and laser optics : Microcavity devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 7, 2013
Manuscript Accepted: December 22, 2013
Published: January 8, 2014

Hiroshi Sekoguchi, Yasushi Takahashi, Takashi Asano, and Susumu Noda, "Photonic crystal nanocavity with a Q-factor of ~9 million," Opt. Express 22, 916-924 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83(8), 1512–1514 (2003). [CrossRef]
  3. Y. Akahane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  4. B. S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  5. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  6. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]
  7. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  8. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express 19(12), 11916–11921 (2011). [CrossRef] [PubMed]
  9. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, “Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands,” Opt. Express 20(20), 22743–22752 (2012). [CrossRef] [PubMed]
  10. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, P. Boucaud, “Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010). [CrossRef]
  11. M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE 99(10), 1768–1779 (2011). [CrossRef]
  12. M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  13. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010). [CrossRef]
  14. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 19(23), 23377–23385 (2011). [CrossRef] [PubMed]
  15. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012). [CrossRef]
  16. Y. Takahashi, Y. Inui, M. Chihara, T. Asano, R. Terawaki, S. Noda, “A micrometre-scale Raman silicon laser with a microwatt threshold,” Nature 498(7455), 470–474 (2013). [CrossRef] [PubMed]
  17. T. Asano, B. S. Song, S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef] [PubMed]
  18. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79(8), 085112 (2009). [CrossRef]
  19. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  20. Y. Z. Yan, S. B. Yan, Z. Ji, J. Liu, C. Y. Xue, W. D. Zhang, J. J. Xiong, “Humidity and particulate testing of a high-Q microcavity packaging comprising a UV-curable polymer and tapered fiber coupler,” Opt. Commun. 285(8), 2189–2194 (2012). [CrossRef]
  21. H. Rokhsari, S. M. Spillane, K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004). [CrossRef]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  23. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  24. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008). [CrossRef]
  25. T. Nakamura, T. Asano, and S. Noda, “How to design higher-Q photonic crystal nanocavity,” in Spring Meeting Jpn Soc. Appl. Phys. (2011), Abstract 26p-KA-8.
  26. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Water (H20),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1991), vol. 2.
  27. T. Takahagi, H. Sakaue, S. Shingubara, “Adsorbed water on a silicon wafer surface exposed to atmosphere,” Jpn. J. Appl. Phys. 40(11), 6198–6201 (2001). [CrossRef]
  28. S. Mizushima, “Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement,” Metrologia 41(3), 137–144 (2004). [CrossRef]
  29. A. L. McClellan, H. F. Harnsberger, “Cross-sectional areas of molecules adsorbed on solid surfaces,” J. Colloid Interface Sci. 23(4), 577–599 (1967). [CrossRef]
  30. M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, “Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: near- and mid-infrared spectroscopy,” J. Near Infrared Spectrosc. 17(1), 373–384 (2009). [CrossRef]
  31. M. Borselli, T. J. Johnson, O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited