OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 925–930

Polarization-independent and fast tunable microlens array based on blue phase liquid crystals

Shih-Hung Lin, Lin-Song Huang, Chi-Huang Lin, and Chie-Tong Kuo  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 925-930 (2014)
http://dx.doi.org/10.1364/OE.22.000925


View Full Text Article

Enhanced HTML    Acrobat PDF (1786 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work investigates a polarization-independent and fast response microlens array. This array is composed of a concave polymer microlens array and blue phase liquid crystals (BPLCs). The microlens array can be either positive or negative, depending on the birefringence of the BPLCs. The experimental results show that the microlens array is fast switched between positive and negative focal lengths via controlling the electric fields, and the response time is a few hundred microseconds. Additionally, the focusing efficiency is independent of the polarization of the incident light.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: November 15, 2013
Revised Manuscript: December 26, 2013
Manuscript Accepted: December 27, 2013
Published: January 8, 2014

Citation
Shih-Hung Lin, Lin-Song Huang, Chi-Huang Lin, and Chie-Tong Kuo, "Polarization-independent and fast tunable microlens array based on blue phase liquid crystals," Opt. Express 22, 925-930 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-925


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-P. Huang, C.-W. Chen, T.-C. Shen, J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” J. 3D Res. 1(1), 39–42 (2010). [CrossRef]
  2. Y.-J. Lee, J.-H. Baek, Y. Kim, J. U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013). [CrossRef] [PubMed]
  3. C. J. Hsu, C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012). [CrossRef] [PubMed]
  4. K.-C. Lo, J.-D. Wang, C.-R. Lee, T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone-plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91(18), 181104 (2007). [CrossRef]
  5. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  6. Z. He, T. Nose, S. Sato, “Molecular orientations and optical transmission properties of liquid crystal cells with slit-patterned electrodes,” Jpn. J. Appl. Phys. 36(1), 1178–1184 (1997). [CrossRef]
  7. C.-H. Lin, Y.-Y. Wang, C.-W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011). [CrossRef] [PubMed]
  8. Y.-H. Lin, H.-S. Chen, H.-C. Lin, Y.-S. Tsou, H.-K. Hsu, W.-Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010). [CrossRef]
  9. H. Ren, Y.-H. Lin, Y.-H. Fan, S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86(14), 141110 (2005). [CrossRef]
  10. V. Presnyakov, K. E. Asatryan, T. V. Galstian, A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002). [CrossRef] [PubMed]
  11. M. Xu, Z. Zhou, H. Ren, S. H. Lee, Q. Wang, “A microlens array based on polymer network liquid crystal,” Appl. Phys. Lett. 113(5), 053105 (2013).
  12. Y. Choi, J.-H. Park, J.-H. Kim, S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1–3), 643–646 (2002).
  13. Y.-H. Fan, H. Ren, X. Liang, H. Wang, S.-T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Disp. Technol. 1(1), 151–156 (2005). [CrossRef]
  14. H. Ren, Y.-H. Fan, S.-T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004). [CrossRef] [PubMed]
  15. L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1–6), 157–170 (2000). [CrossRef]
  16. Y. Hisakado, H. Kikichi, T. Nagamura, T. Kajiyama, “Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases,” Adv. Mater. 17(1), 96–98 (2005). [CrossRef]
  17. S. Y. Lu, L. C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals,” Opt. Lett. 35(4), 562–564 (2010). [CrossRef] [PubMed]
  18. J. Yan, H.-C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, S.-T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010). [CrossRef]
  19. J. Yan, Y. Li, S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011). [CrossRef] [PubMed]
  20. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009). [CrossRef]
  21. K. M. Chen, S. Gauza, H. Xianyu, S. T. Wu, “Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal,” J. Disp. Technol. 6(2), 49–51 (2010). [CrossRef]
  22. S. Piazzolla, B. K. Jenkins, “Dynamics during holographic exposure in photopolymers for single and multiplexed gratings,” J. Mod. Opt. 46(15), 2079–2110 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited