OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 931–942

Cosine-Gaussian correlated Schell-model pulsed beams

Chaoliang Ding, Olga Korotkova, Yongtao Zhang, and Liuzhan Pan  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 931-942 (2014)
http://dx.doi.org/10.1364/OE.22.000931


View Full Text Article

Enhanced HTML    Acrobat PDF (3665 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new class of partially coherent pulses of Schell type with cosine-Gaussian temporal degree of coherence is introduced. Such waves are termed the Cosine-Gaussian Schell-model (CGSM) pulses. The analytic expression for the temporal mutual coherence function of the CGSM pulse in dispersive media is derived and used to study the evolution of its intensity distribution and its temporal degree of coherence. Further, the numerical calculations are performed in order to show the dependence of the intensity profile and the temporal degree of coherence of the CGSM pulse on the incident pulse duration, the initial temporal coherence length, the order-parameter n and the dispersion of the medium. The most important feature of the novel pulsed wave is its ability to split into two pulses on passage in a dispersive medium at some critical propagation distance. Such critical distance and the subsequent evolution of the split pulses are shown to depend on the source parameters and on the properties of the medium in which the pulse travels.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: November 28, 2013
Manuscript Accepted: December 22, 2013
Published: January 8, 2014

Citation
Chaoliang Ding, Olga Korotkova, Yongtao Zhang, and Liuzhan Pan, "Cosine-Gaussian correlated Schell-model pulsed beams," Opt. Express 22, 931-942 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  3. C. Palma, R. Borghi, G. Cincotti, “Beams originated by J0-correlated Schell-model planar sources,” Opt. Commun. 125(1-3), 113–121 (1996). [CrossRef]
  4. F. Gori, M. Santarsiero, R. Borghi, “Modal expansion for J0-correlated electromagnetic sources,” Opt. Lett. 33(16), 1857–1859 (2008). [CrossRef] [PubMed]
  5. S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012). [CrossRef] [PubMed]
  6. O. Korotkova, S. Sahin, E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29(10), 2159–2164 (2012). [CrossRef] [PubMed]
  7. O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014). [CrossRef] [PubMed]
  8. Z. R. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef] [PubMed]
  9. Z. R. Mei, O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38(14), 2578–2580 (2013). [CrossRef] [PubMed]
  10. Z. R. Mei, E. Shchepakina, O. Korotkova, “Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence,” Opt. Express 21(15), 17512–17519 (2013). [CrossRef] [PubMed]
  11. H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011). [CrossRef] [PubMed]
  12. Z. S. Tong, O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  14. P. Pääkkönen, J. Turunen, P. Vahimaa, A. T. Friberg, F. Wyrowski, “Partially coherent Gaussian pulses,” Opt. Commun. 204(1-6), 53–58 (2002). [CrossRef]
  15. Q. Lin, L. G. Wang, S. Y. Zhu, “Partially coherent light pulse and its propagation,” Opt. Commun. 219(1-6), 65–70 (2003). [CrossRef]
  16. L. G. Wang, Q. Lin, H. Chen, S. Y. Zhu, “Propagation of partially coherent pulsed beams in the spatiotemporal domain,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056613 (2003). [CrossRef] [PubMed]
  17. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa, F. Wyrowski, “Spectral coherence properties of temporally modulated stationary light sources,” Opt. Express 11(16), 1894–1899 (2003). [CrossRef] [PubMed]
  18. H. Lajunen, J. Tervo, P. Vahimaa, “Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses,” J. Opt. Soc. Am. A 21(11), 2117–2123 (2004). [CrossRef] [PubMed]
  19. H. Lajunen, P. Vahimaa, J. Tervo, “Theory of spatially and spectrally partially coherent pulses,” J. Opt. Soc. Am. A 22(8), 1536–1545 (2005). [CrossRef] [PubMed]
  20. J. Lancis, V. Torres-Company, E. Silvestre, P. Andrés, “Space-time analogy for partially coherent plane-wave-type pulses,” Opt. Lett. 30(22), 2973–2975 (2005). [CrossRef] [PubMed]
  21. V. Torres-Company, G. Mínguez-Vega, J. Lancis, A. T. Friberg, “Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper,” Opt. Lett. 32(12), 1608–1610 (2007). [CrossRef] [PubMed]
  22. V. Torres-Company, H. Lajunen, J. Lancis, A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77(4), 043811 (2008). [CrossRef]
  23. C. L. Ding, Y. J. Cai, O. Korotkova, Y. T. Zhang, L. Z. Pan, “Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse,” Opt. Lett. 36(4), 517–519 (2011). [CrossRef] [PubMed]
  24. L. Mokhtarpour, S. A. Ponomarenko, “Complex area correlation theorem for statistical pulses in coherent linear absorbers,” Opt. Lett. 37(17), 3498–3500 (2012). [CrossRef] [PubMed]
  25. H. Lajunen, T. Saastamoinen, “Non-uniformly correlated partially coherent pulses,” Opt. Express 21(1), 190–195 (2013). [CrossRef] [PubMed]
  26. C. L. Ding, Y. J. Cai, Y. T. Zhang, H. X. Wang, Z. G. Zhao, L. Z. Pan, “Stochastic electromagnetic plane-wave pulse with non-uniform correlation distribution,” Phys. Lett. A 377(25-27), 1563–1565 (2013). [CrossRef]
  27. F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007). [CrossRef] [PubMed]
  28. S. P. Dijaili, A. Dienes, J. S. Smith, “ABCD matrices for dispersive pulse propagation,” IEEE J. Quantum Electron. 26(6), 1158–1164 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited