OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 943–953

Fast and broadband fiber dispersion measurement with dense wavelength sampling

Giorgio M. Ponzo, Marco N. Petrovich, Xian Feng, Peter Horak, Francesco Poletti, Periklis Petropoulos, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 943-953 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a method to obtain dispersion measurements from spectral-domain low-coherence interferograms which enables high accuracy (≈ps/(nm·km)), broadband measurements and the determination of very dense (up to 20 points/nm over 500 nm) data sets for both dispersion and dispersion slope. The method exploits a novel phase extraction algorithm which allows the phase associated with each sampling point of the interferogram to be calculated and provides for very accurate results as well as a fast measurement capability, enabling close to real time measurements. The important issue of mitigating the measurement errors due to any residual dispersion of optical elements and to environmental fluctuations was also addressed. We performed systematic measurements on standard fibers which illustrate the accuracy and precision of the technique, and we demonstrated its general applicability to challenging problems by measuring a carefully selected set of microstructured fibers: a lead silicate W-type fiber with a flat, near-zero dispersion profile; a hollow core photonic bandgap fiber with strongly wavelength dependent dispersion and dispersion slope; a small core, highly birefringent index guiding microstructured fiber, for which polarization resolved measurements over an exceptionally wide (≈1000 nm) wavelength interval were obtained.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Waveguide and Optoelectronic Devices

Original Manuscript: October 16, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 9, 2013
Published: January 9, 2014

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express

Giorgio M. Ponzo, Marco N. Petrovich, Xian Feng, Peter Horak, Francesco Poletti, Periklis Petropoulos, and David J. Richardson, "Fast and broadband fiber dispersion measurement with dense wavelength sampling," Opt. Express 22, 943-953 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010). [CrossRef]
  2. A. Camerlingo, X. Feng, F. Poletti, G. M. Ponzo, F. Parmigiani, P. Horak, M. N. Petrovich, P. Petropoulos, W. H. Loh, D. J. Richardson, “Near-zero dispersion, highly nonlinear lead-silicate W-type fiber for applications at 1.55 microm,” Opt. Express 18(15), 15747–15756 (2010). [CrossRef] [PubMed]
  3. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986). [CrossRef] [PubMed]
  4. V. I. Kruglov, C. Aguergaray, J. D. Harvey, “Propagation and breakup of pulses in fiber amplifiers and dispersion-decreasing fibers with third-order dispersion,” Phys. Rev. A 84(2), 023823 (2011). [CrossRef]
  5. M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. A 374(4), 691–695 (2010). [CrossRef]
  6. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, G. M. Ponzo, M. N. Petrovich, J. Shi, W. H. Loh, D. J. Richardson, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol. 16(6), 378–391 (2010), doi:. [CrossRef]
  7. C. Lin, A. F. Tynes, A. Tomita, P. L. Liu, D. L. Philen, “Chromatic dispersion measurements in single-mode fibers using picosecond InGaAsP injection lasers in the 1.2-to 1.5-µm spectral region,” Bell Syst. Tech. J. 62(2), 457–462 (1983). [CrossRef]
  8. B. Costa, M. Puleo, E. Vezzoni, “Phase-shift technique for the measurement of chromatic dispersion in single-mode optical fibres using LEDs,” Electron. Lett. 19(25-26), 1074–1076 (1983). [CrossRef]
  9. P. L. Francois, F. Alard, M. Monerie, “Chromatic dispersion measurement from Fourier-transform of white-light interference patterns,” Electron. Lett. 23(7), 357–358 (1987). [CrossRef]
  10. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre,” Electron. Lett. 35(1), 63–64 (1999), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=749225&isnumber=16199 . [CrossRef]
  11. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quant. Electron. 17(3), 404–407 (1981). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1071115&isnumber=23019 [CrossRef]
  12. H.-T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4245900&isnumber=4245884 . [CrossRef]
  13. J. Jasapara, T. H. Her, R. Bise, R. Windeler, D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20(8), 1611–1615 (2003). [CrossRef]
  14. J. Stone, L. G. Cohen, “Minimum-dispersion spectra of single-mode fibers measured with subpicosecond resolution by white-light cross-correlation,” Electron. Lett. 18(16), 716–718 (1982). [CrossRef]
  15. P. Merritt, R. P. Tatam, D. A. Jackson, “Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber,” J. Lightwave Technol. 7(4), 703–716 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=19099&isnumber=724 . [CrossRef]
  16. G. M. Ponzo, M. N. Petrovich, X. Feng, P. Horak, F. Poletti, P. Petropoulos, and D. J. Richardson, “Fast and broadband fiber dispersion measurement with dense wavelength sampling,” in 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 22–26 Sept. 2013, paper We.1.A.2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6647576&isnumber=6647462
  17. G. M. Ponzo, “Broadband Characterisation of single and multimode microstructured optical fibres,” Ph.D. Thesis, University of Southampton, Southampton, UK (2013), Chapter 3.
  18. M. A. Ettabib, L. Jones, J. Kakande, R. Slavík, F. Parmigiani, X. Feng, F. Poletti, G. M. Ponzo, J. D. Shi, M. N. Petrovich, W. H. Loh, P. Petropoulos, D. J. Richardson, “Phase sensitive amplification in a highly nonlinear lead-silicate fiber,” Opt. Express 20(2), 1629–1634 (2012). [CrossRef] [PubMed]
  19. A. Camerlingo, F. Parmigiani, X. Feng, F. Poletti, W. H. Loh, D. Richardson, and P. Petropoulos, “160-to-40Gibt/s time demultiplexing in a low dispersion lead-silicate W-index profile fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThS6. [CrossRef]
  20. G. M. Ponzo, X. Feng, P. Horak, F. Poletti, M. N. Petrovich, W. H. Loh, and D. Richardson, “Flat, broadband supercontinuum generation at low pulse energies in a dispersion-tailored lead-silicate fibre,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.09. [CrossRef]
  21. G. Bouwmans, F. Luan, J. C. Knight, P. St J Russell, L. Farr, B. J. Mangan, H. Sabert, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express 11(14), 1613–1620 (2003). [CrossRef] [PubMed]
  22. M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited