OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11488–11497

Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings

Liang Fang and Hongzhi Jia  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 11488-11497 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two parallel combinative long-period fiber gratings (LPFGs) can convert the fundamental core mode LP01 in a single-mode fiber (SMF) into one desired higher order core mode LP0m in a few-mode fiber (FMF), in the process of which one specific cladding mode acts as a medium coupled from one fiber to another. Different LP0m modes can be obtained by controlling the grating period of LPFG in FMF to meet the phase matching condition. In this article we focus on the design and analyses of LP02 and LP03 mode add / drop multiplexers (MADMs). This device has some advantages of facile and good scalability, and particularly, of eliminating coupling interferences for the ahead multiplexed modes by the posterior MADMs or couplers. Furthermore, the conversion rate of mode power theoretically can approach as much as 98% and the 3dB bandwidth can reach 10nm or more.

© 2014 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics

Original Manuscript: March 13, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 27, 2014
Published: May 5, 2014

Liang Fang and Hongzhi Jia, "Mode add/drop multiplexers of LP02 and LP03 modes with two parallel combinative long-period fiber gratings," Opt. Express 22, 11488-11497 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Kokubun, M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009). [CrossRef]
  2. N. Bozinovic, Y. Yue, Y. X. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef] [PubMed]
  3. A. Li, A. Al Amin, X. Chen, W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express 19(9), 8808–8814 (2011). [CrossRef] [PubMed]
  4. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express 19(17), 16593–16600 (2011). [CrossRef] [PubMed]
  5. N. Riesen, J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron. 48(7), 941–945 (2012). [CrossRef]
  6. J. D. Love, N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett. 37(19), 3990–3992 (2012). [CrossRef] [PubMed]
  7. A. Li, X. Chen, A. A. Amin, W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 24(21), 1953–1956 (2012). [CrossRef]
  8. N. Riesen, J. D. Love, “Ultra-broadband tapered mode-selective couplers for few-mode optical fiber networks,” IEEE Photon. Technol. Lett. 25(24), 2501–2504 (2013). [CrossRef]
  9. Y. Xie, S. Fu, H. Liu, H. Zhang, M. Tang, P. Shum, D. Liu, “Design and numerical optimization of a mode multiplexer based on few-mode fiber couplers,” J. Opt. 15(12), 125404 (2013). [CrossRef]
  10. Y. Yue, Y. Yan, N. Ahmed, N. Ahmed, J. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Doliner, M. Tur, A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photon. J. 4, 535–543 (2012).
  11. T. Erdogan, “Cladding-mode resonances in short- and long period fiber grating filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997). [CrossRef]
  12. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Academic Press, 2006), Chap. 3.
  13. K. S. Chiang, F. Y. M. Chan, M. N. Ng, “Analysis of two parallel long-period fiber gratings,” J. Lightwave Technol. 22(5), 1358–1366 (2004). [CrossRef]
  14. M. Z. Alam, J. Albert, “Selective excitation of radially and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013). [CrossRef]
  15. C. Tsao, Optical Fibre Waveguide Analysis (Oxford University, 1992), Part 3.
  16. F. Abrishamian, S. Sato, M. Imai, “A new method of solving multimode coupled equations for analysis of uniform and non-uniform fiber Bragg gratings and its application to acoustically induced superstructure modulation,” Opt. Rev. 12(6), 467–471 (2005). [CrossRef]
  17. M. J. Kim, Y. M. Jung, B. H. Kim, W. T. Han, B. H. Lee, “Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers,” Opt. Express 15(17), 10855–10862 (2007). [CrossRef] [PubMed]
  18. Y. Liu, K. S. Chiang, Y. J. Rao, Z. L. Ran, T. Zhu, “Light coupling between two parallel CO2-laser written long-period fiber gratings,” Opt. Express 15(26), 17645–17651 (2007). [CrossRef] [PubMed]
  19. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  20. K. S. Lee, T. Erdogan, “Fiber mode conversion with tilted gratings in an optical fiber,” J. Opt. Soc. Am. A 18(5), 1176–1185 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited