OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11516–11527

Effect of plasmon-enhancement on photophysics in upconverting nanoparticles

Q.-C. Sun, J. Casamada-Ribot, V. Singh, H. Mundoor, I. I. Smalyukh, and P. Nagpal  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 11516-11527 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon polaritons (SPP) waves have been shown to significantly affect the near-field photophysical phenomenon. In particular, strong Coulombic interactions can enhance nearby non-linear optics and energy transfer process, while SPP waves also affect other photophysical processes like quenching observed in fluorescent and excitonic systems. Here, using different plasmonic substrates, we show the effect of plasmon-enhancement on quenching, phonon-assisted non-radiative decay, weak Purcell effect or electromagnetic field enhancement, and energy transfer rates of upconverting doped-lanthanide nanoparticles. While the resonant plasmons enhance the local electromagnetic field and the rate of energy transfer leading to enhanced upconversion photoluminescence of infrared radiation to visible light, it can also increase the quenching and non-radiative decay rates of photoexcited electron-hole pairs leading to losses and lower efficiency. These results can guide the design of optimized substrate geometry for using surface plasmons to modulate the photophysics in other applications too.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(190.7220) Nonlinear optics : Upconversion

ToC Category:

Original Manuscript: March 14, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 23, 2014
Published: May 5, 2014

Q.-C. Sun, J. Casamada-Ribot, V. Singh, H. Mundoor, I. I. Smalyukh, and P. Nagpal, "Effect of plasmon-enhancement on photophysics in upconverting nanoparticles," Opt. Express 22, 11516-11527 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer, H. U. Gudel, “Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86(1), 013505 (2005). [CrossRef]
  2. B. M. van der Ende, L. Aarts, A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  3. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008). [CrossRef] [PubMed]
  4. F. Wang, X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009). [CrossRef] [PubMed]
  5. Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan, “Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect,” ACS Nano 7(8), 7200–7206 (2013). [CrossRef] [PubMed]
  6. J. Zhao, D. Jin, E. P. Schartner, Y. Lu, Y. Liu, A. V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys, T. M. Monro, “Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence,” Nat. Nanotechnol. 8(10), 729–734 (2013). [CrossRef] [PubMed]
  7. F. Auzel, “Upconversion and anti-stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef] [PubMed]
  8. M. Haase, H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011). [CrossRef] [PubMed]
  9. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463(7284), 1061–1065 (2010). [CrossRef] [PubMed]
  10. A. Polman, F. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004). [CrossRef]
  11. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett. 10(1), 134–138 (2010). [CrossRef] [PubMed]
  12. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, “Tuning upconversion through energy migration in core-shell nanoparticles,” Nat. Mater. 10(12), 968–973 (2011). [CrossRef] [PubMed]
  13. J. Wang, R. Deng, M. A. MacDonald, B. Chen, J. Yuan, F. Wang, D. Chi, T. S. A. Hor, P. Zhang, G. Liu, Y. Han, X. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2014). [CrossRef] [PubMed]
  14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  15. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [CrossRef] [PubMed]
  16. C. Lin, M. T. Berry, R. Anderson, S. Smith, P. S. May, “Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment,” Chem. Mater. 21(14), 3406–3413 (2009). [CrossRef]
  17. A. Polman, “Applied physics. Plasmonics applied,” Science 322(5903), 868–869 (2008). [CrossRef] [PubMed]
  18. T. Lee, R. P. Trivedi, I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010). [CrossRef] [PubMed]
  19. Q. C. Sun, H. Mundoor, J. C. Ribot, V. Singh, I. I. Smalyukh, P. Nagpal, “Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals,” Nano Lett. 14(1), 101–106 (2014). [CrossRef] [PubMed]
  20. J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater. 27(6), 1111–1130 (2005). [CrossRef]
  21. B. S. Cao, Y. Y. He, L. Zhang, B. Dong, “Upconversion properties of Er3+-Yb3+:NaYF4 phosphors with a wide range of Yb3+ concentration,” J. Lumin. 135, 128–132 (2013). [CrossRef]
  22. M. G. Nikolić, D. J. Jovanović, M. D. Dramićanin, “Temperature dependence of emission and lifetime in Eu3+- and Dy3+-doped GdVO4.,” Appl. Opt. 52(8), 1716–1724 (2013). [CrossRef] [PubMed]
  23. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  24. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010). [CrossRef] [PubMed]
  25. P. Nagpal, N. C. Lindquist, S.-H. Oh, D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009). [CrossRef] [PubMed]
  26. N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  27. M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008). [CrossRef]
  28. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013). [CrossRef] [PubMed]
  29. Y. Li, J. Zhang, X. Zhang, Y. Luo, X. Ren, H. Zhao, X. Wang, L. Sun, C. Yan, “Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: enhanced red color upconversion and three-photon process in green color upconversion,” J. Phys. Chem. C 113(11), 4413–4418 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited