OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11583–11591

A high-finesse broadband optical cavity using calcium fluoride prism retroreflectors

Brian Lee, Kevin Lehmann, Joshua Taylor, and Azer Yalin  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 11583-11591 (2014)
http://dx.doi.org/10.1364/OE.22.011583


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-finesse broadband optical cavity has been developed for use in the ultraviolet and visible region using Brewster-angle calcium fluoride (CaF2) prism retroreflectors. Prior to prism construction, optical loss measurements of CaF2 windows were performed using cavity ring-down spectroscopy at 250 nm. Total optical loss showed high spatial correlation with crystal birefringence, which was partially mitigated by orienting the <111> crystal axis with the laser beam. Prism reflectivity was measured using cavity ring-down spectroscopy and found to be 99.77% at 250 nm and 99.96% at 500 nm, allowing for relatively high-finesse operation over hundreds of nm bandwidth with a single cavity.

© 2014 Optical Society of America

OCIS Codes
(160.3220) Materials : Ionic crystals
(300.1030) Spectroscopy : Absorption
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Optical Devices

History
Original Manuscript: March 3, 2014
Revised Manuscript: April 16, 2014
Manuscript Accepted: April 29, 2014
Published: May 6, 2014

Citation
Brian Lee, Kevin Lehmann, Joshua Taylor, and Azer Yalin, "A high-finesse broadband optical cavity using calcium fluoride prism retroreflectors," Opt. Express 22, 11583-11591 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-11583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. OKeefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  2. K. Busch, M. Busch, Cavity-Ringdown Spectroscopy, Vol. 720 of ACS Symposium Series (Oxford University, 1999). [CrossRef]
  3. G. Berden, R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009).
  4. G. Gagliardi, H. Loock, eds., Cavity-Enhanced Spectroscopy and Sensing, Springer Series in Optical Sciences (Springer, 2014). [CrossRef]
  5. A. Pierce, D. Obrist, H. Moosmüller, X. Faïn, C. Moore, “Cavity ring-down spectroscopy sensor development for high-time-resolution measurements of gaseous elemental mercury in ambient air,” Atmos. Meas. Tech. 6, 1477–1489 (2013). [CrossRef]
  6. H. Moosmüller, “Brewster’s angle porro prism: A different use for a pellin-broca prism,” Appl. Opt. 37, 8140–8142 (1998). [CrossRef]
  7. G. Engel, W. B. Yan, J. Dudek, K. K. Lehmann, P. Rabinowitz, “Ring down spectroscopy with a Brewster’s angle prism resonator,” in Laser Spectroscopy XIV International Conference, R. Blatt, ed. (World Scientific, 1999), pp. 314–315.
  8. K. K. Lehmann, P. S. Johnston, P. Rabinowitz, “Brewster angle prism retroreflectors for cavity enhanced spectroscopy,” Appl. Opt. 48, 2966–2978 (2009). [CrossRef] [PubMed]
  9. P. S. Johnston, K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16, 15013–15023 (2008). [CrossRef] [PubMed]
  10. “Tiger optics,” www.tigeroptics.com . Last access: 1 January, 2014.
  11. H. Chen, W. B. Yan, “Prism-based cavity ring-down spectroscopy: Broadband and ultrahigh reflectivity,” in 62nd International Symposium on Molecular Spectroscopy (2007).
  12. S. Logunov, S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98, 053501 (2005). [CrossRef]
  13. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997). [CrossRef]
  14. J. H. Burnett, Z. H. Levine, E. L. Shirley, “Intrinsic birefringence in calcium fluoride and barium fluoride,” Phys. Rev. B 64, 241102 (2001). [CrossRef]
  15. J. H. Burnett, “Stress-optical coefficients of 157 nm materials,” in SEMATECH 157nm Technical Data Review (2011).
  16. J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983). [CrossRef] [PubMed]
  17. A. E. Siegman, Lasers (University Science, 1986).
  18. “Errata list for lasers,” http://budker.berkeley.edu/208b/laserserr.pdf . Last access: 4 April, 2014.
  19. H. Naus, W. Ubachs, “Experimental verification of rayleigh scattering cross sections,” Opt. Lett. 25, 347–349 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited