OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11592–11599

Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback

Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 11592-11599 (2014)
http://dx.doi.org/10.1364/OE.22.011592


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve a suppression in frequency noise spectral density of 20 dB measured at frequencies around 1 MHz, corresponding to the narrowing of the intrinsic Lorentzian linewidth from 200 kHz to 2 kHz. Provided additional active low-frequency noise suppression and long-term drift compensation, the system is suitable for experiments requiring a tunable ultraviolet laser with narrow linewidth and low high-frequency noise, such as precision spectroscopy, optical clocks, and quantum information science experiments.

© 2014 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 26, 2014
Revised Manuscript: April 13, 2014
Manuscript Accepted: April 21, 2014
Published: May 6, 2014

Citation
Polnop Samutpraphoot, Sophie Weber, Qian Lin, Dorian Gangloff, Alexei Bylinskii, Boris Braverman, Akio Kawasaki, Christoph Raab, Wilhelm Kaenders, and Vladan Vuletić, "Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback," Opt. Express 22, 11592-11599 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-11592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletić, W. König, T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995). [CrossRef]
  2. H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191–9197 (2006). [CrossRef] [PubMed]
  3. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987). [CrossRef] [PubMed]
  4. J. Labaziewicz, P. Richerme, K. R. Brown, I. L. Chuang, K. Hayasaka, “Compact, filtered diode laser system for precision spectroscopy,” Opt. Lett. 32, 572–574 (2007). [CrossRef] [PubMed]
  5. Y. Zhao, Y. Peng, T. Yang, Y. Li, Q. Wang, F. Meng, J. Cao, Z. Fang, T. Li, E. Zang, “External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback,” Opt. Lett. 36, 34–36 (2011). [CrossRef] [PubMed]
  6. K. Hayasaka, “Modulation-free optical locking of an external-cavity diode laser to a filter cavity,” Opt. Lett. 36, 2188–2190 (2011). [CrossRef] [PubMed]
  7. D. J. Thompson, R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum. 83, 023107 (2012). [CrossRef] [PubMed]
  8. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37, 4729–4731 (2012). [CrossRef] [PubMed]
  9. Q. Lin, M. A. Van Camp, H. Zhang, B. Jelenković, V. Vuletić, “Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth,” Opt. Lett. 37, 1989–1991 (2012). [CrossRef] [PubMed]
  10. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10(−15),” Opt. Lett. 32, 641–643 (2007). [CrossRef] [PubMed]
  11. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008). [CrossRef]
  12. F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line,” Opt. Lett. 34, 914–916 (2009). [CrossRef] [PubMed]
  13. T. Savard, K. OHara, J. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095–R1098 (1997). [CrossRef]
  14. T. Nazarova, C. Lisdat, F. Riehle, U. Sterr, “Low-frequency-noise diode laser for atom interferometry,” J. Opt. Soc. Am. B 25, 1632–1638 (2008). [CrossRef]
  15. D. J. Wineland, “Quantum information processing and quantum control with trapped atomic ions,” Phys. Scripta T137, 014007 (2009). [CrossRef]
  16. G. Di Domenico, S. Schilt, P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt. 49, 4801–4807 (2010). [CrossRef] [PubMed]
  17. R. Tkach, A. Chraplyvy, “Regimes of feedback effects in 1.5um distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]
  18. Y. Zhao, J. Zhang, J. Stuhler, G. Schuricht, F. Lison, Z. Lu, L. Wang, “Sub-Hertz frequency stabilization of a commercial diode laser,” Opt. Commun. 283, 4696–4700 (2010). [CrossRef]
  19. C. Henry, R. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited