OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11633–11645

Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering

Yuzhang Liang, Wei Peng, Rui Hu, and Mengdi Lu  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 11633-11645 (2014)
http://dx.doi.org/10.1364/OE.22.011633


View Full Text Article

Enhanced HTML    Acrobat PDF (3153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a metal-dielectric dual-wavelength spectral filtering structure based on symmetry-reduced double layer metallic gratings (SRDMG) coupled to a guided-mode dielectric resonator. The grating symmetry is reduced by alternatively shifting metal nanowires of the top layer metallic grating. Compared to a symmetric double layer metallic grating that usually provides one resonance dip, this SRDMG structure generates two remarkable narrow band transmission dips with a transmission peak in-between at normal incidence. The appearance of the two narrowband resonance dips is attributed to the excitation of different current modes in the metallic grating, leading to different guided mode resonances in the dielectric layer, which is induced by the structural symmetry breaking. Moreover, these two guided modes do not split under oblique incidence and a flat dispersion band over a small angular range can be obtained. The positions of two dips and the frequency gap between them can be controlled by adjusting the thickness of metallic grating without the need to modify the structure period and width, which is an easy method to tune resonance position and bandwidth, and make the fabrication of some filters more convenient. This work can be used to develop subwavelength metallic-grating-based multi-wavelength and narrow-band spectral filters.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.7370) Optical devices : Waveguides
(260.3910) Physical optics : Metal optics
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 11, 2014
Revised Manuscript: April 21, 2014
Manuscript Accepted: April 28, 2014
Published: May 6, 2014

Citation
Yuzhang Liang, Wei Peng, Rui Hu, and Mengdi Lu, "Symmetry-reduced double layer metallic grating structure for dual-wavelength spectral filtering," Opt. Express 22, 11633-11645 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-11633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  2. S. Collin, G. Vincent, R. Haïdar, N. Bardou, S. Rommeluère, J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104(2), 027401 (2010). [CrossRef] [PubMed]
  3. Y.-T. Yoon, C.-H. Park, S.-S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012). [CrossRef]
  4. C.-H. Park, Y.-T. Yoon, S.-S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012). [CrossRef] [PubMed]
  5. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef] [PubMed]
  6. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  7. Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013). [CrossRef] [PubMed]
  8. F. Lemarchand, A. Sentenac, H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998). [CrossRef] [PubMed]
  9. T. Zentgraf, S. Zhang, R. F. Oulton, X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009). [CrossRef]
  10. Z. G. Dong, P.-G. Ni, J. Zhu, X. Zhang, “Transparency window for the absorptive dipole resonance in a symmetry-reduced grating structure,” Opt. Express 20(7), 7206–7211 (2012). [CrossRef] [PubMed]
  11. J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011). [CrossRef]
  12. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011). [CrossRef]
  13. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Waveguide-Plasmon Polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003). [CrossRef] [PubMed]
  14. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J.-L. Pelouard, R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett. 36(16), 3054–3056 (2011). [CrossRef] [PubMed]
  15. E. Sakat, S. Héron, P. Bouchon, G. Vincent, F. Pardo, S. Collin, J.-L. Pelouard, R. Haïdar, “Metal-dielectric bi-atomic structure for angular-tolerant spectral filtering,” Opt. Lett. 38(4), 425–427 (2013). [CrossRef] [PubMed]
  16. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31(4), 516–518 (2006). [CrossRef] [PubMed]
  17. Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, H. B. Chan, “Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays,” Opt. Lett. 33(13), 1410–1412 (2008). [CrossRef] [PubMed]
  18. Z. S. Liu, R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photon. Technol. Lett. 14(8), 1091–1093 (2002). [CrossRef]
  19. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  20. Lumerical Solutions, http://www.lumerical.com .
  21. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986). [CrossRef]
  22. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  23. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  24. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett. 96(22), 221104 (2010). [CrossRef]
  25. L. P. Wang, Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited