OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11660–11669

A versatile integrating sphere based photoacoustic sensor for trace gas monitoring

Mikael Lassen, David Balslev-Clausen, Anders Brusch, and Jan C. Petersen  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 11660-11669 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3805 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact versatile photoacoustic (PA) sensor for trace gas detection is reported. The sensor is based on an integrating sphere as the PA absorption cell with an organ pipe tube attached to increase the sensitivity of the PA sensor. The versatility and enhancement of the sensitivity of the PA signal is investigated by monitoring specific ro-vibrational lines of CO2 in the 2 μm wavelength region and of NO2 in the 405 nm region. The measured enhancement factor of the PA signal exceeds 1200, which is due to the acoustic resonance of the tube and the absorption enhancement of the integrating sphere relatively to a non-resonant single pass cell. It is observed that the background absorption signals are highly attenuated due to the thermal conduction and diffusion effects in the polytetrafluoroethylene cell walls. This demonstrates that careful choice of cell wall materials can be highly beneficial to the sensitivity of the PA sensor. These properties makes the sensor suitable for various practical sensor applications in the ultraviolet (UV) to the near infrared (NIR) wavelength region, including climate, environmental and industrial monitoring.

© 2014 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.6430) Spectroscopy : Spectroscopy, photothermal
(110.5125) Imaging systems : Photoacoustics

ToC Category:

Original Manuscript: March 24, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 26, 2014
Published: May 6, 2014

Mikael Lassen, David Balslev-Clausen, Anders Brusch, and Jan C. Petersen, "A versatile integrating sphere based photoacoustic sensor for trace gas monitoring," Opt. Express 22, 11660-11669 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Sigrist, Air Monitoring by Spectroscopic Techniques (John Wiley, 1994).
  2. M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90, 289–300 (2008). [CrossRef]
  3. C. K. N. Patel, “Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives,” Eur. Phys. J. Spec. Top. 153(1), 1–18 (2008). [CrossRef]
  4. F. M. J. Harren, G. Cotti, J. Oomens, S. te Lintel Hekkert, “Photoacoustic spectroscopy in trace gas monitoring,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley, 2000).
  5. M. Nägele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas detection,” Appl. Phys. B 70, 895–901 (2000). [CrossRef]
  6. A. Miklos, P. Hess, Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937–1955 (2001). [CrossRef]
  7. M. Xu, L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  8. K. H. Michaelian, Photoacoustic Infrared Spectroscopy, Chemical Analysis Series, J. D. Winefordner, ed. (John Wiley, 2003). [CrossRef]
  9. V. Koskinen, J. Fonsen, K. Roth, J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibr. Spectrosc. 48(1), 16–21 (2008). [CrossRef]
  10. J.-P. Besson, S. Schilt, L. Thévenaz, “Sub-ppm multi-gas photoacoustic sensor,” Spectrochim. Acta A 63, 899–904 (2006). [CrossRef]
  11. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (John Wiley, 1980).
  12. M. Webber, M. Pushkarsky, C. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119–2126 (2003). [CrossRef] [PubMed]
  13. J. Rey, D. Marinov, D. Vogler, M. Sigrist, “Investigation and optimisation of a multipass resonant photoacoustic cell at high absorption levels,” Appl. Phys. B 80, 261–266 (2005). [CrossRef]
  14. A. Miklos, S. C. Pei, A. H. Kung, “Multipass acoustically open photoacoustic detector for trace gas measurements,” Appl. Opt. 45, 2529–2534 (2006). [CrossRef] [PubMed]
  15. J. Saarela, J. Sand, T. Sorvajarvi, A. Manninen, J. Toivonen, “Transversely excited multipass photoacoustic cell using electromechanical film as microphone,” Sensors 10, 5294–5307 (2010). [CrossRef] [PubMed]
  16. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, L. Emmenegger, “Versatile multipass cell for laser spectroscopic trace gas analysis,” Appl. Phys. B 109(3), 461–466 (2012). [CrossRef]
  17. P. Elterman, “Integrating cavity spectroscopy,” Appl. Opt. 9, 2140–2142 (1970). [CrossRef] [PubMed]
  18. J. Hodgkinson, D. Masiyano, R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48(30), 5748–5758 (2009). [CrossRef] [PubMed]
  19. S. Tranchart, I. H. Bachir, J.-L. Destombes, “Sensitive trace gas detection with near-infrared laser diodes and an integrating sphere,” Appl. Opt. 35, 7070–7074 (1996). [CrossRef] [PubMed]
  20. E. Hawe, E. Lewis, C. Fitzpatrick, “Hazardous gas detection with an integrating sphere in the near-infrared, J. Phys. Conf. Ser. 15, 250–255 (2005). [CrossRef]
  21. R. Lewicki, G. Wysocki, A. A. Kosterev, F. K. Tittel, “Carbon dioxide and ammonia detection using 2m diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157–162 (2007). [CrossRef]
  22. E. Hawe, G. Dooly, C. Fitzpatrick, E. Lewis, P. Chambers, “UV based pollutant quantification in automotive exhausts,” Proc. SPIE 6198, 619807 (2006). [CrossRef]
  23. R. Bernhardt, G. D. Santiago, V. B. Slezak, A. Peuriot, M. G. Gonzlez, “Differential, LED-excited, resonant NO2 photoacoustic system,” Sens. Actuators B 150, 513–516 (2010). [CrossRef]
  24. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36, 481–483 (2011). [CrossRef] [PubMed]
  25. A. G. Bell, “The production of sound by radiant energy,” Philos. Mag. 11, 510 (1881). [CrossRef]
  26. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986). [CrossRef]
  27. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3 (Springer, 2003). [CrossRef]
  28. F. Harren, J. Reuss, Photoacoustic Spectroscopy, G. L. Trigg, ed. (Wiley-VCH, 1979).
  29. S. Schilt, L. Thevenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48, 154–162 (2006). [CrossRef]
  30. J. N. Pitts, J. H. Sharp, S. I. Chan, “Effects of wavelength and temperature on primary processes in the photolysis of nitrogen dioxide and a spectroscopic-photochemical determination of the dissociation energy,” J. Chem. Phys. 40, 3655–3662 (1964). [CrossRef]
  31. N. Barreiro, A. Vallespi, A. Peuriot, V. Slezak, G. Santiago, “Quenching effects on pulsed photoacoustic signals in NO2-air samples,” Appl. Phys. B: Lasers Opt. 99, 591–597 (2010). [CrossRef]
  32. J. Saarela, T. Sorvajärvi, T. Laurila, J. Toivonen, “Phase-sensitive method for background-compensated photoacoustic detection of NO2 using high-power LEDs,” Opt. Express 19, 725–732 (2011). [CrossRef]
  33. I. S. Sidorov, S. V. Miridonov, E. Nippolainen, A. A. Kamshilin, “Estimation of light penetration depth in turbid media using laser speckles,” Opt. Express, 20(13), 13692–13701 (2012). [CrossRef] [PubMed]
  34. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena (John Wiley, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited