OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11849–11860

Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch

Zhibo Ren, Yiqing Xu, Yi Qiu, Kenneth K. Y. Wong, and Kevin Tsia  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 11849-11860 (2014)
http://dx.doi.org/10.1364/OE.22.011849


View Full Text Article

Enhanced HTML    Acrobat PDF (2778 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Real-time experimental measurements of the spectrally-resolved noise properties of supercontinuum (SC) have been challenging because of the lack of ultrafast optical spectrometer technologies. Understanding the SC noise is increasingly important because it not only can gain new insight of the complex spectral dynamics of SC generation, but also provides clues to search for stable SC source. Driven by the intense interest in the active seeding mechanism for SC generation, we experimentally demonstrate real-time spectrally-resolved, broadband, statistical characterization of minute continuous-wave (CW) seeded SC, enabled by an ultrahigh-speed spectral acquisition technique called optical time-stretch (OTS). The shot-to-shot statistical analysis shows that the seeded SC exhibits a general compromise between SC bandwidth and spectral stability. OTS also allows us to experimentally identify the seeding condition for SC suppression, in which the spectral broadening is mainly contributed by the cascaded parametric process that delays Akhmediev Breather breakup process and subsequent soliton self-frequency shift. Additionally, the characteristic spectral signature of the Raman solitons, which are becalmed by the minute CW seed, can be clearly captured in real-time by OTS operated at a spectral acquisition rate as high as 20 MHz. We anticipate the OTS technique could provide further new insights for understanding more complex mechanisms of seeded-SC generation which can be examined experimentally.

© 2014 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: March 3, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: May 5, 2014
Published: May 8, 2014

Citation
Zhibo Ren, Yiqing Xu, Yi Qiu, Kenneth K. Y. Wong, and Kevin Tsia, "Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch," Opt. Express 22, 11849-11860 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-11849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  2. D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  3. J. M. Dudley, G. Genty, B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008). [CrossRef] [PubMed]
  4. G. Genty, J. M. Dudley, B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009). [CrossRef]
  5. D. R. Solli, C. Ropers, B. Jalali, “Active Control of Rogue Waves for Stimulated Supercontinuum Generation,” Phys. Rev. Lett. 101(23), 233902 (2008). [CrossRef] [PubMed]
  6. D. R. Solli, B. Jalali, C. Ropers, “Seeded Supercontinuum Generation with Optical Parametric Down-Conversion,” Phys. Rev. Lett. 105(23), 233902 (2010). [CrossRef] [PubMed]
  7. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29(10), 2875–2885 (2012). [CrossRef]
  8. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19(15), 13757–13769 (2011). [CrossRef] [PubMed]
  9. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36(2), 160–162 (2011). [CrossRef] [PubMed]
  10. D. M. Nguyen, T. Godin, S. Toenger, Y. Combes, B. Wetzel, T. Sylvestre, J. M. Merolla, L. Larger, G. Genty, F. Dias, J. M. Dudley, “Incoherent resonant seeding of modulation instability in optical fiber,” Opt. Lett. 38(24), 5338–5341 (2013). [CrossRef] [PubMed]
  11. X. Wei, C. Zhang, S. Xu, Z. Yang, K. K. Tsia, K. K. Y. Wong, “Effect of the CW-seed's linewidth on the seeded generation of supercontinuum,” IEEE J. Sel. Top. Quantum Electron.in press.
  12. J. Chou, D. R. Solli, B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008). [CrossRef]
  13. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19(17), 15810–15816 (2011). [CrossRef] [PubMed]
  14. Y. Qiu, J. Xu, K. K. Y. Wong, K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20(22), 24115–24123 (2012). [CrossRef] [PubMed]
  15. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37(16), 3330–3332 (2012). [CrossRef] [PubMed]
  16. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012). [CrossRef] [PubMed]
  17. F. Xing, H. Chen, M. Chen, S. Yang, S. Xie, “Simple approach for fast real-time line scan microscopic imaging,” Appl. Opt. 52(28), 7049–7053 (2013). [CrossRef] [PubMed]
  18. K. Goda, B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013). [CrossRef]
  19. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia, “Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow,” Sci Rep 4, 3656 (2014). [CrossRef] [PubMed]
  20. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014). [CrossRef] [PubMed]
  21. D. R. Solli, G. Herink, B. Jalali, C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6(7), 463–468 (2012). [CrossRef]
  22. D. R. Solli, C. Ropers, B. Jalali, “Measuring single-shot modulation instability and supercontinuum spectra at megahertz rates,” Nonlinearity 26(3), R85–R92 (2013). [CrossRef]
  23. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci Rep 2, 882 (2012). [CrossRef] [PubMed]
  24. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013). [CrossRef] [PubMed]
  25. D. R. Solli, C. Ropers, B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010). [CrossRef]
  26. K. K. Tsia, K. Goda, D. Capewell, B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010). [CrossRef] [PubMed]
  27. D. R. Solli, S. Gupta, B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett. 95(23), 231108 (2009). [CrossRef]
  28. M. Erkintalo, G. Genty, J. M. Dudley, “On the statistical interpretation of optical rogue waves,” Eur. Phys. J. Spec. Top. 185(1), 135–144 (2010). [CrossRef]
  29. S. T. Sørensen, O. Bang, B. Wetzel, J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285(9), 2451–2455 (2012). [CrossRef]
  30. J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited