OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 11884–11891

High peak power gigahertz Yb:CALGO laser

Alexander Klenner, Matthias Golling, and Ursula Keller  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 11884-11891 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2538 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-power gigahertz SESAM modelocked Yb:CALGO laser with sub-60-fs pulses. The laser delivers an average output power of 2.95 W at a pulse repetition rate of 1.8 GHz in fundamental modelocking without additional pulse compression or amplification. Stable modelocking with a single pulse per cavity round-trip is confirmed and results in an output peak power of 24.3 kW and a pulse energy of 1.64 nJ. The laser is pumped by a commercial multimode diode laser, which improves the reliability and robustness. This high-power gigahertz laser is expected to enable numerous applications in frequency metrology.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(320.0320) Ultrafast optics : Ultrafast optics
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 12, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: May 2, 2014
Published: May 8, 2014

Alexander Klenner, Matthias Golling, and Ursula Keller, "High peak power gigahertz Yb:CALGO laser," Opt. Express 22, 11884-11891 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32(1), 435–506 (2009). [CrossRef] [PubMed]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  3. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4, 715–723 (2012).
  4. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999). [CrossRef]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000). [CrossRef] [PubMed]
  6. E. R. Thoen, E. M. Koontz, D. J. Jones, D. Barbier, F. X. Kärtner, E. P. Ippen, L. A. Kolodziejski, “Erbium-Ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror,” IEEE Photon. Technol. Lett. 12(2), 149–151 (2000). [CrossRef]
  7. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992). [CrossRef] [PubMed]
  8. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  9. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010). [CrossRef]
  10. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T. Südmeyer, U. Keller, P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser,” Opt. Express 19(24), 24171–24181 (2011). [CrossRef] [PubMed]
  11. A. Bartels, D. Heinecke, S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  13. T. Udem, R. Holzwarth, T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  14. U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004). [CrossRef]
  15. H.-W. Chen, G. Chang, S. Xu, Z. Yang, F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett. 37(17), 3522–3524 (2012). [CrossRef] [PubMed]
  16. A. Martinez, S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011). [CrossRef] [PubMed]
  17. I. Hartl, H. A. McKay, R. Thapa, B. K. Thomas, A. Ruehl, L. Dong, and M. E. Fermann, “Fully stabilized GHz Yb-fiber laser frequency comb,” in Advanced Solid-State Photonics (Denver, Colorado, USA, 2009), p. MF9.
  18. S. Schilt, V. Dolgovskiy, N. Bucalovic, C. Schori, M. C. Stumpf, G. Domenico, S. Pekarek, A. E. H. Oehler, T. Südmeyer, U. Keller, P. Thomann, “Noise properties of an optical frequency comb from a SESAM-mode-locked 1.5-μm solid-state laser stabilized to the 10−13 level,” Appl. Phys. B 109(3), 391–402 (2012). [CrossRef]
  19. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spühler, L. Krainer, N. Haverkamp, H. R. Telle, U. Keller, “Nearly quantum-noise-limited timing jitter from miniature Er:Yb:glass lasers,” Opt. Lett. 30(12), 1536–1538 (2005). [CrossRef] [PubMed]
  20. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38(10), 1331–1338 (2002). [CrossRef]
  21. A. E. H. Oehler, M. C. Stumpf, S. Pekarek, T. Südmeyer, K. J. Weingarten, U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99(1–2), 53–62 (2010). [CrossRef]
  22. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein. Laser Physics and Applications. Subvolume B: Laser Systems. Part I, G. Herziger, H. Weber, and R. Proprawe, eds. (Springer, 2007), pp. 33–167.
  23. M. Endo, A. Ozawa, Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express 20(11), 12191–12197 (2012). [CrossRef] [PubMed]
  24. M. Endo, A. Ozawa, Y. Kobayashi, “6-GHz, Kerr-lens mode-locked Yb:Lu2O3 ceramic laser for comb-resolved broadband spectroscopy,” Opt. Lett. 38(21), 4502–4505 (2013). [CrossRef] [PubMed]
  25. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35(9), 1446–1448 (2010). [CrossRef] [PubMed]
  26. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express 20(4), 4248–4253 (2012). [CrossRef] [PubMed]
  27. T. C. Schratwieser, C. G. Leburn, D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett. 37(6), 1133–1135 (2012). [CrossRef] [PubMed]
  28. S. Yamazoe, M. Katou, T. Adachi, T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett. 35(5), 748–750 (2010). [CrossRef] [PubMed]
  29. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express 19(17), 16491–16497 (2011). [CrossRef] [PubMed]
  30. A. Klenner, M. Golling, U. Keller, “A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal,” Opt. Express 21(8), 10351–10357 (2013). [CrossRef] [PubMed]
  31. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999). [CrossRef]
  32. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014). [CrossRef] [PubMed]
  33. J. Petit, P. Goldner, B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett. 30(11), 1345–1347 (2005). [CrossRef] [PubMed]
  34. A. Diebold, F. Emaury, C. J. Saraceno, C. Schriber, M. Golling, T. Suedmeyer, U. Keller, “SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation,” Opt. Lett. 38, 3842–3845 (2013). [CrossRef] [PubMed]
  35. Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006). [CrossRef] [PubMed]
  36. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007). [CrossRef] [PubMed]
  37. R. Paschotta, L. Krainer, S. Lecomte, G. J. Spühler, S. C. Zeller, A. Aschwanden, D. Lorenser, H. J. Unold, K. J. Weingarten, U. Keller, “Picosecond pulse sources with multi-GHz repetition rates and high output power,” New J. Phys. 6, 174 (2004). [CrossRef]
  38. F. X. Kärtner, I. D. Jung, U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996). [CrossRef]
  39. L. R. Brovelli, U. Keller, T. H. Chiu, “Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12(2), 311–322 (1995). [CrossRef]
  40. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B 81(1), 27–32 (2005). [CrossRef]
  41. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008). [CrossRef] [PubMed]
  42. J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett. 22(5), 307–309 (1997). [CrossRef] [PubMed]
  43. C. R. Phillips, A. S. Mayer, A. Klenner, U. Keller, “SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express 22(5), 6060–6077 (2014). [CrossRef] [PubMed]
  44. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited