OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12007–12012

Dynamic range extension of SiPM detectors with the time-gated operation

Eva Vilella and Angel Diéguez  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12007-12012 (2014)
http://dx.doi.org/10.1364/OE.22.012007


View Full Text Article

Enhanced HTML    Acrobat PDF (974 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.

© 2014 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.5160) Detectors : Photodetectors
(250.0250) Optoelectronics : Optoelectronics
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: October 14, 2013
Revised Manuscript: March 28, 2014
Manuscript Accepted: March 29, 2014
Published: May 12, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Eva Vilella and Angel Diéguez, "Dynamic range extension of SiPM detectors with the time-gated operation," Opt. Express 22, 12007-12012 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12007


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Donati, Photodetectors (Prentice Hall, 1999).
  2. A. V. Akindinov, A. N. Martemianov, P. A. Polozov, V. M. Golovin, E. A. Grigoriev, “New results on MRS APDs,” Nucl. Instrum. Methods Phys. Res. Sect. A 387(1–2), 231–234 (1997). [CrossRef]
  3. F. Zappa, S. Tisa, A. Tosi, S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators A Phys. 140(1), 103–112 (2007). [CrossRef]
  4. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007), Chap. 2.
  5. W. Kucewicz, “Review of ASIC developments for SiPM signal readout,” Industria-academy matching event on SiPM and related technologies (CERN, Geneva, Switzerland, 2011).
  6. E. Garutti, “Silicon photomultipliers for high energy physics detectors,” arXiv:1108.3166v1 [physics.ins-det] (2011). [CrossRef]
  7. M. G. Bagliesi, C. Avanzini, G. Bigongiari, R. Cecchi, M. Y. Kim, P. Maestro, P. S. Marrocchesi, F. Morsani, “A custom front-end ASIC for the readout and timing of 64 SiPM photosensors,” Nucl. Phys. B 215(1), 344–348 (2011). [CrossRef]
  8. F. Powolny, E. Auffray, S. E. Brunner, E. Garutti, M. Goettlich, H. Hillemanns, P. Jarron, P. Lecoq, T. Meyer, H. C. Schultz-Coulon, W. Shen, M. C. S. Williams, “Time-based readout of a silicon photomultiplier (SiPM) for time of flight positron emission tomography (TOF-PET),” IEEE Trans. Nucl. Sci. 58(3), 597–604 (2011). [CrossRef]
  9. G. Llosá, P. Barrillon, J. Barrio, M. G. Bisogni, J. Cabello, A. Del Guerra, A. Etxebeste, J. E. Gillam, C. Lacasta, J. F. Oliver, M. Rafecas, C. Solaz, V. Stankova, C. de La Taille, “High performance detector head for PET and PET/MR with continuous crystals and SiPMs,” Nucl. Instrum. Methods Phys. Res. Sect. A 702, 3–5 (2013). [CrossRef]
  10. T. Frach, G. Prescher, C. Degenhardt, R. de Gruyter, A. Schmitz, R. Ballizany, “The digital silicon photomultiplier – Principle of operation and intrinsic detector performance,” in Proceedings of IEEE Nuclear Science Symposium Conference Record (Orlando, USA, 2009), pp. 1959–1965. [CrossRef]
  11. T. Frach, G. Prescher, C. Degenhardt, B. Zwaans, “The digital silicon photomultiplier – System architecture and performance evaluation,” in Proceedings of IEEE Nuclear Science Symposium Conference Record (Knoxville, USA, 2010), pp. 1722–1727. [CrossRef]
  12. Thermoelectrically cooled MPPC for photon counting – Active area 1 x 1 mm, Hamamatsu MPPC S11028 series (2013).
  13. J. J. Fox, N. Woodard, G. P. Lafyatis, “Characterization of cooled large-area silicon avalanche photodiodes,” Rev. Sci. Instrum. 70(4), 1951–1956 (1999). [CrossRef]
  14. B. F. Levine, C. G. Bethea, “Single photon detection at 1.3 μm using a gated avalanche photodiode,” Appl. Phys. Lett. 44(5), 553–555 (1984). [CrossRef]
  15. M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011). [CrossRef] [PubMed]
  16. D. Stoppa, D. Mosconi, L. Pancheri, L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009). [CrossRef]
  17. Y. Maruyama, E. Charbon, “A time-gated 128x128 CMOS SPAD array for on-hip fluorescence detection,” in Proceedings 2011 International Image Sensor Workshop (Hookkaido, Japan, 2011), R41.
  18. E. Vilella, A. Diéguez, “Readout schemes for low noise single-photon avalanche diodes fabricated in conventional HV-CMOS technologies,” Microelectron. J.in press.
  19. C. Niclass, “Single-photon image sensors in CMOS: Picosecond resolution for three-dimensional imaging,” PhD Thesis Dissertation 4161, École Polytechnique Fédérale de Lausanne (Lausanne, Switzerland, 2008).
  20. 1 x 12 VCSEL Array 2.7 – 3.6 Gb/s, 8685–1402, Emcore (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited