OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12102–12114

Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation

Shuo Chen, Xiaoqian Lin, Clement Yuen, Saraswathi Padmanabhan, Roger W. Beuerman, and Quan Liu  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12102-12114 (2014)
http://dx.doi.org/10.1364/OE.22.012102


View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Raman spectroscopy is a powerful non-destructive technique for qualitatively and quantitatively characterizing materials. However, noise often obscures interesting Raman peaks due to the inherently weak Raman signal, especially in biological samples. In this study, we develop a method based on spectral reconstruction to recover Raman spectra with low signal-to-noise ratio (SNR). The synthesis of narrow-band measurements from low-SNR Raman spectra eliminates the effect of noise by integrating the Raman signal along the wavenumber dimension, which is followed by spectral reconstruction based on Wiener estimation to recover the Raman spectrum with high spectral resolution. Non-negative principal components based filters are used in the synthesis to ensure that most variance contained in the original Raman measurements are retained. A total of 25 agar phantoms and 20 bacteria samples were measured and data were used to validate our method. Four commonly used de-noising methods in Raman spectroscopy, i.e. Savitzky-Golay (SG) algorithm, finite impulse response (FIR) filtration, wavelet transform and factor analysis, were also evaluated on the same set of data in addition to the proposed method for comparison. The proposed method showed the superior accuracy in the recovery of Raman spectra from measurements with extremely low SNR, compared with the four commonly used de-noising methods.

© 2014 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(300.6170) Spectroscopy : Spectra
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: March 24, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 4, 2014
Published: May 12, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Shuo Chen, Xiaoqian Lin, Clement Yuen, Saraswathi Padmanabhan, Roger W. Beuerman, and Quan Liu, "Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation," Opt. Express 22, 12102-12114 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. H. Ong, M. Lim, Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20(20), 22158–22171 (2012). [CrossRef] [PubMed]
  2. Y. Li, J. Pan, G. Chen, C. Li, S. Lin, Y. Shao, S. Feng, Z. Huang, S. Xie, H. Zeng, R. Chen, “Micro-Raman spectroscopy study of cancerous and normal nasopharyngeal tissues,” J. Biomed. Opt. 18(2), 027003 (2013). [CrossRef] [PubMed]
  3. A. E. Kandjani, M. J. Griffin, R. Ramanathan, S. J. Griffin, S. K. Bhargava, V. Bansal, “A new paradigm for signal processing of Raman spectra using a smoothing free algorithm: Coupling continuous wavelet transform with signal removal method,” J. Raman Spectrosc. 44(4), 608–621 (2013). [CrossRef]
  4. S. Feng, J. Lin, Z. Huang, G. Chen, W. Chen, Y. Wang, R. Chen, H. Zeng, “Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis,” Appl. Phys. Lett. 102(4), 043702 (2013). [CrossRef]
  5. J. Lin, R. Chen, S. Feng, J. Pan, B. Li, G. Chen, S. Lin, C. Li, L. Sun, Z. Huang, H. Zeng, “Surface-enhanced Raman scattering spectroscopy for potential noninvasive nasopharyngeal cancer detection,” J. Raman Spectrosc. 43(4), 497–502 (2012). [CrossRef]
  6. G. Li, “Noise Removal of Raman Spectra Using Interval Thresholding Method.” in Proceeding of IEEE conference on Intelligent Information Technology Application (Shanghai,2008), pp. 535–539. [CrossRef]
  7. M. Člupek, P. Matějka, K. Volka, “Noise reduction in Raman spectra: Finite impulse response filtration versus Savitzky–Golay smoothing,” J. Raman Spectrosc. 38(9), 1174–1179 (2007). [CrossRef]
  8. A. Kwiatkowski, M. Gnyba, J. Smulko, P. Wierzba, “Algorithms of chemicals detection using raman spectra,” Metrol. Meas. Syst. 17(4), 549–559 (2010). [CrossRef]
  9. M. Villarroel, P. Barreiro, P. Kettlewell, M. Farish, M. Mitchell, “Time derivatives in air temperature and enthalpy as non-invasive welfare indicators during long distance animal transport,” Biosystems Eng. 110(3), 253–260 (2011). [CrossRef]
  10. Y. P. Wang, Y. Wang, P. Spencer, “Fuzzy clustering of Raman spectral imaging data with a wavelet-based noise-reduction approach,” Appl. Spectrosc. 60(7), 826–832 (2006). [CrossRef] [PubMed]
  11. F. Ehrentreich, L. Sümmchen, “Spike Removal and Denoising of Raman Spectra by Wavelet Transform Methods,” Anal. Chem. 73(17), 4364–4373 (2001). [CrossRef] [PubMed]
  12. J. Palacký, P. Mojzeš, J. Bok, “SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations,” J. Raman Spectrosc. 42(7), 1528–1539 (2011). [CrossRef]
  13. J. Hanuš, K. Chmelová, J. Štěpánek, P. Y. Turpin, J. Bok, I. Rosenberg, Z. Točík, “Raman spectroscopic study of triplex-like complexes of polyuridylic acid with the isopolar, non-isosteric phosphonate analogues of diadenosine monophosphate,” J. Raman Spectrosc. 30(8), 667–676 (1999). [CrossRef]
  14. S. Chen, Y. H. Ong, Q. Liu, “Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation,” J Raman Spectrosc. 44(6), 875–881 (2013). [CrossRef]
  15. S. Chen, Q. Liu, “Modified Wiener estimation of diffuse reflectance spectra from RGB values by the synthesis of new colors for tissue measurements,” J. Biomed. Opt. 17(3), 030501 (2012). [CrossRef] [PubMed]
  16. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39(35), 6621–6632 (2000). [CrossRef] [PubMed]
  17. W. F. Zhang, D. Q. Dai, “Spectral reflectance estimation from camera responses by support vector regression and a composite model,” J. Opt. Soc. Am. A 25(9), 2286–2296 (2008). [CrossRef] [PubMed]
  18. R. Piché, “Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra,” J. Opt. Soc. Am. A 19(10), 1946–1950 (2002). [CrossRef] [PubMed]
  19. J. S. U. Hjorth, “Cross validation,” in Computer Intensive Statistical Methods: Validation, Model Selection, and Boostrap (Chapman and Hall/CRC, 1993).
  20. P. Martinez, “Bias,” in A Practical Guide to CCD Astronomy (Cambridge University, 1998, 8).
  21. R. L. McCreery, “SNR,” in Raman Spectroscopy for Chemical Analysis (John Wiley & Sons, 2005, 157).
  22. D. Chen, Z. Chen, E. Grant, “Adaptive wavelet transform suppresses background and noise for quantitative analysis by Raman spectrometry,” Anal. Bioanal. Chem. 400(2), 625–634 (2011). [CrossRef] [PubMed]
  23. B. Hu, Q. Li, A. Smith, “Noise reduction of hyperspectral data using singular spectral analysis,” Int. J. Remote Sens. 30(9), 2277–2296 (2009). [CrossRef]
  24. L. Birgé and P. Massart, “Birge-Massart strategy,” in Research Papers in Probaility and Statistics (Springer, 1997, 35).
  25. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003). [CrossRef] [PubMed]
  26. P. M. Ramos, I. Ruisánchez, “Noise and background removal in Raman spectra of ancient pigments using wavelet transform,” J. Raman Spectrosc. 36(9), 848–856 (2005). [CrossRef]
  27. D. Van de Sompel, E. Garai, C. Zavaleta, S. S. Gambhir, “A comparison of noise models in a hybrid reference spectrum and principal components analysis algorithm for Raman spectroscopy,” J. Raman Spectrosc. 44(6), 841–856 (2013). [CrossRef]
  28. J. M. Williamson, R. J. Bowling, R. L. McCreery, “Near-Infrared Raman Spectroscopy with a 783-nm Diode Laser and CCD Array Detector,” Appl. Spectrosc. 43(3), 372–375 (1989). [CrossRef]
  29. J. Khan, J. S. Wei, M. Ringnér, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson, P. S. Meltzer, “Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks,” Nat. Med. 7(6), 673–679 (2001). [CrossRef] [PubMed]
  30. F. E. Harrell, K. L. Lee, D. B. Mark, “Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors,” Stat. Med. 15(4), 361–387 (1996). [CrossRef] [PubMed]
  31. H. G. Schulze, R. B. Foist, A. Ivanov, R. F. Turner, “Fully automated high-performance signal-to-noise ratio enhancement based on an iterative three-point zero-order Savitzky-Golay filter,” Appl. Spectrosc. 62(10), 1160–1166 (2008). [CrossRef] [PubMed]
  32. H. G. Schulze, R. B. Foist, A. Ivanov, R. F. Turner, “Chi-squared-based filters for high-fidelity signal-to-noise ratio enhancement of spectra,” Appl. Spectrosc. 62(8), 847–853 (2008). [CrossRef] [PubMed]
  33. R. B. Foist, H. G. Schulze, A. Jirasek, A. Ivanov, R. F. Turner, “A matrix-based two-dimensional regularization algorithm for signal-to-noise ratio enhancement of multidimensional spectral data,” Appl. Spectrosc. 64(11), 1209–1219 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited