OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12115–12121

A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation

Indra Karnadi, Jaehyeon Son, Ju-Young Kim, Hoon Jang, Seungwoo Lee, Ki Soo Kim, Bumki Min, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12115-12121 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A small-footprint nanobeam photonic crystal laser made of InGaAsP material is directly integrated on a SiO2/Si substrate without using adhesive material via transfer-printing processes (i.e., dry transfer-printing). The transferred nanobeam structure with a physical volume of ~6.6 × 0.58 × 0.28 µm3 (~10.5 (λ/n)3) shows single mode lasing near 1550 nm with continuous-wave (CW) operation at room-temperature, where effective lasing threshold power was as low as 9 µW. This CW operation was achieved mainly due to efficient heat dissipation provided by direct contact between the nanobeam and the substrate. This transfer-printed nanobeam laser could be a promising candidate for the next-generation light source with a feature of low-power consumption in ultracompact photonic integrated circuits.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.5298) Materials : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 24, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 4, 2014
Published: May 12, 2014

Indra Karnadi, Jaehyeon Son, Ju-Young Kim, Hoon Jang, Seungwoo Lee, Ki Soo Kim, Bumki Min, and Yong-Hee Lee, "A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation," Opt. Express 22, 12115-12121 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, J. M. Fedeli, L. D. Cioccio, C. L. Blanchard, “III-V/Si photonics by die-to-wafer bonding,” Mater. Today 10(7–8), 36–43 (2007). [CrossRef]
  2. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photon. Rev. 4(6), 751–779 (2010). [CrossRef]
  3. D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]
  4. H. Yang, D. Zhao, S. Chuwongin, J.-H. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, W. Zhou, “Transfer-printed stacked nanomembrane lasers on silicon,” Nat. Photonics 6(9), 615–620 (2012). [CrossRef]
  5. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  6. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  7. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011). [CrossRef]
  8. K.-Y. Jeong, Y.-S. No, Y. Hwang, K.-S. Kim, M.-K. Seo, H.-G. Park, Y.-H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013). [CrossRef] [PubMed]
  9. K. Nozaki, S. Kita, T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  10. J. Huang, S.-H. Kim, J. Gardner, P. Regreny, C. Seassal, P. A. Postigo, A. Scherer, “Room temperature, continuous-wave coupled cavity InAsP/InP photonic crystal laser with enhanced far-field emission directionality,” Appl. Phys. Lett. 99(9), 091110 (2011). [CrossRef]
  11. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012). [CrossRef] [PubMed]
  12. M. H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, P. D. Dapkus, “Photonic crystal lasers in InGaAsP on SiO2/Si substrate and its thermal impedance,” Opt. Express 15(1), 227–232 (2007). [CrossRef] [PubMed]
  13. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K.-H. Lee, R. Braive, L. Le Gratiet, S. Guilet, G. Beaudoin, A. Taneau, S. Bouchoule, A. Levenson, R. Raj, “Continuous-wave operation of photonic band-edge laser near 1.55 µm on silicon wafer,” Opt. Express 15(12), 7551–7556 (2007). [CrossRef] [PubMed]
  14. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express 17(17), 15043–15051 (2009). [CrossRef] [PubMed]
  15. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, I. Sagnes, G. Roelkens, D. Van Thourhout, F. Raineri, R. Raj, “III-V photonic crystal wire cavity laser on silicon wafer,” J. Opt. Soc. Am. B 27(10), 2146–2150 (2010). [CrossRef]
  16. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19(10), 9221–9231 (2011). [CrossRef] [PubMed]
  17. T.-W. Lu, W.-C. Tsai, T.-Y. Wu, P.-T. Lee, “Laser emissions from one-dimensional photonic crystal rings on silicon-dioxide,” Appl. Phys. Lett. 102(5), 051103 (2013). [CrossRef]
  18. W. S. Fegadolli, S.-H. Kim, P. A. Postigo, A. Scherer, “Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics,” Opt. Lett. 38(22), 4656–4658 (2013). [CrossRef] [PubMed]
  19. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nat. Mater. 5(1), 33–38 (2006). [CrossRef]
  20. B. Wang, T. Siahaan, M. A. Dundar, R. Notzel, S. He, R. W. van der Heijden, “Transfer printing and nanomanipulating luminescent photonic crystal membrane nanocavities,” J. Appl. Phys. 111(9), 093105 (2012). [CrossRef]
  21. M. Notomi, E. Kuramochi, H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  23. B.-S. Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  24. H.-G. Park, J.-K. Hwang, J. Huh, H.-Y. Ryu, S.-H. Kim, J.-S. Kim, Y.-H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002). [CrossRef]
  25. M. Shearn, X. Sun, M. D. Henry, A. Yariv, and A. Scherer, “Advanced plasma processing: etching, deposition, and wafer bonding techniques for semiconductor applications,” in Semiconductor Technologies, J. Grym, ed. (InTech, 2010), pp. 80–104.
  26. K. Nozaki, A. Nakagawa, D. Sano, T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003). [CrossRef]
  27. H.-Y. Ryu, H.-G. Park, Y.-H. Lee, “Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization,” IEEE J. Sel. Top. Quantum Electron. 8(4), 891–908 (2000).
  28. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808–830 (1997). [CrossRef]
  29. S.-L. Chuang, Physics of Photonic Devices (Wiley, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited