OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12122–12132

Hydrogenated amorphous silicon photonic device trimming by UV-irradiation

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12122-12132 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method to compensate for fabrication tolerances and to fine-tune individual photonic circuit components is inevitable for wafer-scale photonic systems even with most-advanced CMOS-fabrication tools. We report a cost-effective and highly accurate method for the permanent trimming of hydrogenated amorphous silicon photonic devices by UV-irradiation. Microring resonators and Mach-Zehnder-interferometers were utilized as photonic test devices. The MZIs were tuned forth and back over their complete free spectral range of 5.5 nm by locally trimming the two MZI-arms. The trimming range exceeds 8 nm for compact ring resonators with trimming accuracies of 20 pm. Trimming speeds of ≥ 10 GHz/s were achieved. The components did not show any substantial device degradation.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(220.4241) Optical design and fabrication : Nanostructure fabrication
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: March 26, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 26, 2014
Published: May 12, 2014

Timo Lipka, Melanie Kiepsch, Hoc Khiem Trieu, and Jörg Müller, "Hydrogenated amorphous silicon photonic device trimming by UV-irradiation," Opt. Express 22, 12122-12132 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Cocorullo, F. G. D. Corte, I. Rendina, C. Minarini, A. Rubino, E. Terzini, “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition,” Opt. Lett. 21(24), 2002–2004 (1996). [CrossRef] [PubMed]
  2. A. Harke, M. Krause, J. Müller, “Low-loss singlemode amorphous silicon waveguides,” Electronics Letters 41(25), 1377–1379 (2005). [CrossRef]
  3. R. Takei, S. Manako, E. Omoda, Y. Sakakibara, M. Mori, T. Kamei, “Sub-1 dB/cm submicrometer-scale amorphous silicon waveguide for backend on-chip optical interconnect,” Opt. Express 22(4), 4779–4788 (2014). [CrossRef] [PubMed]
  4. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009). [CrossRef]
  5. T. Lipka, O. Horn, J. Amthor, J. Müller, “Low-loss multilayer compatible a-Si:H optical thin films for photonic applications,” J. Eur. Opt. Soc. Rap. Publicat. 7, 12033 (2012). [CrossRef]
  6. A. Harke, T. Lipka, J. Amthor, O. Horn, M. Krause, J. Müller, “Amorphous silicon 3-D tapers for Si photonic wires fabricated with shadow masks,” IEEE Photon. Technol. Lett. 20(17), 1452–1454 (2008). [CrossRef]
  7. H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, C. Tsai, “A two-port single-mode fiber-silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol. 27(10), 1315–1319 (2009). [CrossRef]
  8. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16,(16), 11682–11690 (2008). [CrossRef] [PubMed]
  9. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 50, 120208 (2011). [CrossRef]
  10. K. Furuya, R. Takei, T. Kamei, Y. Sakakibara, M. Mori, “Basic study of coupling on three-dimensional crossing of Si photonic wire waveguide for optical interconnection on inter or inner chip,” Jpn. J. Appl. Phys. 51, 4DG12 (2012). [CrossRef]
  11. J. T. Bessette, D. Ahn, “Vertically stacked microring waveguides for coupling between multiple photonic planes,” Opt. Express 21(11), 13580–13591 (2013). [CrossRef] [PubMed]
  12. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010). [CrossRef] [PubMed]
  13. K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  14. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. Oxenlwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011). [CrossRef]
  15. K. Y. Wang, A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  16. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20(20), 22609–22615 (2012). [CrossRef] [PubMed]
  17. J. Safioui, F. Leo, B. Kuyken, S. Gorza, S. Selvaraja, R. Baets, P. Emplit, G. Roelkens, S. Massar, “Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths,” Opt. Express 22(3), 3089–3097 (2014). [CrossRef] [PubMed]
  18. F. G. Della Corte, S. Rao, G. Coppola, C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19(4), 2941–2951 (2011). [CrossRef] [PubMed]
  19. S. Rao, G. Coppola, M. Gioffr, F. Della Corte, “A 2.5 ns switching time MachZehnder modulator in as-deposited a-Si:H,” Opt. Express 20(9), 9351–9356 (2012). [CrossRef] [PubMed]
  20. Y. H. D. Lee, M. O. Thompson, M. Lipson, “Deposited low temperature silicon GHz modulator,” Opt. Express 21(22), 26688–26692 (2013). [CrossRef] [PubMed]
  21. L. Fan, L. Varghese, Y. Xuan, J. Wang, B. Niu, M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20(18), 20564–20575 (2012). [CrossRef] [PubMed]
  22. T. Lipka, L. Wahn, H. K. Trieu, L. Hilterhaus, J. Müller, “Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators,” J. Nanophoton. 7(1), 073793 (2013). [CrossRef]
  23. T. Lipka, J. Amthor, J. Müller, “Process and device uniformity of low-loss a-Si:H,” in Proceedings of IEEE Photonics Conf. (IPC) (BurlingameCalifornia, 2012), pp. 923–924.
  24. S. Grillanda, V. Raghunathan, V. Singh, F. Morichetti, J. Michel, L. Kimerling, A. Melloni, A. Agarwal, “Post-fabrication trimming of athermal silicon waveguides,” Opt. Lett. 38(24), 5450–5453 (2013). [CrossRef] [PubMed]
  25. Y. Shen, I. Divliansky, D. Basov, S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36(14), 2668–2670 (2011). [CrossRef] [PubMed]
  26. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G. Q. Lo, D. L. Kwong, C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express 19(13), 12480–12489 (2011). [CrossRef] [PubMed]
  27. J. Ackert, J. Doylend, D. Logan, P. Jessop, R. Vafaei, L. Chrostowski, A. Knights, “Defect-mediated resonance shift of silicon-on-insulator racetrack resonators,” Opt. Express 19(13), 11969–11976 (2011). [CrossRef] [PubMed]
  28. O. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21(9), 11048–11056 (2013). [CrossRef] [PubMed]
  29. J. Schrauwen, D. Van Thourhout, R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008). [CrossRef] [PubMed]
  30. A. Canciamilla, F. Morichetti, S. Grillanda, P. Velha, M. Sorel, V. Singh, A. Agarwal, L. C. Kimerling, A. Melloni, “Photo-induced trimming of chalcogenide-assisted silicon waveguides,” Opt. Express 20(14), 15807–15817 (2012). [CrossRef] [PubMed]
  31. L. Zhou, K. Okamoto, S. J. B. Yoo, “Athermalizing and trimming of slotted silicon microring resonators with uv-sensitive pmma upper-cladding,” IEEE Photon. Technol. Lett. 21(17), 1175–1177 (2009). [CrossRef]
  32. S. Prorok, A. Y. Petrov, M. Eich, J. Luo, A. K. Y. Jen, “Trimming of high-q-factor silicon ring resonators by electron beam bleaching,” Opt. Lett. 37(15), 3114–3116 (2012). [CrossRef] [PubMed]
  33. M. Erdmanis, L. Karvonen, M. R. Saleem, M. Ruoho, V. Pale, A. Tervonen, S. Honkanen, I. Tittonen, “ALD-assisted multiorder dispersion engineering of nanophotonic strip waveguides,” J. Lightwave Technol. 30(15), 2488–2493 (2012). [CrossRef]
  34. A. H. Atabaki, A. A. Eftekhar, M. Askari, A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013). [CrossRef] [PubMed]
  35. R. A. Street, “Hydrogenated Amorphous Silicon,” (Cambridge University Press, 1991).
  36. T. Lipka, A. Harke, O. Horn, J. Amthor, J. Müller, “Amorphous silicon as high index photonic material,” Proc. SPIE 7366, paper 73661Z (2009). [CrossRef]
  37. S. Y. Zhu, G. Q. Lo, D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express 18(24), 25283–25291 (2010). [CrossRef] [PubMed]
  38. S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, M. Schaekers, “Thermal trimming and tuning of hydrogenated amorphous silicon nanophotonic devices,” Appl. Phys. Lett. 97, 071120 (2010). [CrossRef]
  39. T. Lipka, A. Harke, O. Horn, J. Amthor, J. Müller, “Amorphous waveguides for high index photonic circuitry,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (OSA, 2009), paper OMJ2.
  40. D. G. Cahill, M. Katiyar, J. R. Abelson, “Thermal conductivity of a-Si:H thin films,” Phys. Rev. B 50(9), 6077–6081 (1994). [CrossRef]
  41. M. Iodice, G. Mazzi, L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express 14, 5266–5278 (2006). [CrossRef] [PubMed]
  42. S. Li, Y. Jiang, Z. Wu, J. Wu, Z. Ying, Z. Wang, W. Li, G. J. Salamo, “Effect of structure variation on thermal conductivity of hydrogenated silicon film,” Appl. Surf. Sci. 257(20), 8326–8329 (2011). [CrossRef]
  43. J F. Ready, “Effects of high-power laser radiation,” (Academic Press, New York, 1971).
  44. L. Pauling, “The nature of the chemical bonding,” (Cornell Univ. Press, New York, 1982).
  45. N. H. Nickel, K. Brendel, R. Saleh, “Laser crystallization of hydrogenated amorphous silicon,” Phys. Stat. Sol.C 1(5), 1154–1168 (2004).
  46. K. Shimakawa, A. Kolobov, S. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44, 475–588 (1995). [CrossRef]
  47. D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31, 292 (1977). [CrossRef]
  48. M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985). [CrossRef]
  49. T. Shimizu, “Staebler-Wronski effect in hydrogenated amorphous silicon and related alloy films,” Jpn. J. Appl. Phys. 43(6A), 3257–3268 (2004). [CrossRef]
  50. M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, R. Bittl, C. Teutloff, K. Lips, “Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H,” Phys. Rev. Lett. 112, 066403 (2014). [CrossRef] [PubMed]
  51. F. Gaspari, “Optoelectronic properties of amorphous silicon the role of hydrogen: from experiment to modeling,” in Optoelectronics - Materials and Techniques, P. Predeep, ed. (InTech, 2011), pp. 3–26. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited