OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12189–12199

Plasmon modes in single gold nanodiscs

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12189-12199 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: Optical properties of single gold nanodiscs were studied by scanning near-field optical microscopy. Near-field transmission spectra of a single nanodisc exhibited multiple plasmon resonances in the visible to near-infrared region. Near-field transmission images observed at these resonance wavelengths show wavy spatial features depending on the wavelength of observation. To clarify physical pictures of the images, theoretical simulations based on spatial correlation between electromagnetic fundamental modes inside and outside of the disc were performed. Simulated images reproduced the observed spatial structures excited in the disc. Mode-analysis of the simulated images indicates that the spatial features observed in the transmission images originate mainly from a few fundamental plasmon modes of the disc.

© 2014 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: February 26, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 29, 2014
Published: May 13, 2014

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, "Plasmon modes in single gold nanodiscs," Opt. Express 22, 12189-12199 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  2. C. Valsecchi, A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013). [CrossRef] [PubMed]
  3. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  5. G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  6. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36(6–7), 485–496 (2005). [CrossRef]
  7. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  8. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011). [CrossRef] [PubMed]
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  11. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  13. K. Imura, T. Nagahara, H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005). [CrossRef] [PubMed]
  14. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011). [CrossRef] [PubMed]
  15. B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula, M. Varela, G. C. Schatz, S. J. Pennycook, J. P. Camden, “Correlated optical measurements and plasmon mapping of silver nanorods,” Nano Lett. 11(8), 3482–3488 (2011). [CrossRef] [PubMed]
  16. I. Alber, W. Sigle, S. Müller, R. Neumann, O. Picht, M. Rauber, P. A. van Aken, M. E. Toimil-Molares, “Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers,” ACS Nano 5(12), 9845–9853 (2011). [CrossRef] [PubMed]
  17. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  18. P. Hanarp, M. Käll, D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B 107(24), 5768–5772 (2003). [CrossRef]
  19. C. Langhammer, B. Kasemo, I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007). [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  21. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  22. F. Papoff, B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19(22), 21432–21444 (2011). [CrossRef] [PubMed]
  23. K. Holms, B. Hourahine, F. Papoff, “Calculation of internal and scattered fields of axisymmetric nanoparticles at any point in space,” J. Opt. A, Pure Appl. Opt. 11(5), 054009 (2009). [CrossRef]
  24. B. Hourahine, K. Holms, F. Papoff, “Accurate light scattering for non spherical particles from Mie-type theory,” J. Phys. Conf. Ser. 367, 012010 (2012). [CrossRef]
  25. B. Hourahine, F. Papoff, “The geometrical nature of optical resonances: from a sphere to fused dimer nanoparticles,” Meas. Sci. Technol. 23(8), 084002 (2012). [CrossRef]
  26. D. McArthur, B. Hourahine, F. Papoff, “Evaluation of E.M. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. J. 4, 565–575 (2014).
  27. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128(44), 14226–14227 (2006). [CrossRef] [PubMed]
  28. H. Okamoto, K. Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4(13), 2230–2241 (2013). [CrossRef]
  29. K. Imura, K. Ueno, H. Misawa, H. Okamoto, “Anomalous light transmission from plasmonic-capped nanoapertures,” Nano Lett. 11(3), 960–965 (2011). [CrossRef] [PubMed]
  30. K. Imura, T. Nagahara, H. Okamoto, “Characteristic near-field spectra of single gold nanoparticles,” Chem. Phys. Lett. 400(4–6), 500–505 (2004). [CrossRef]
  31. K. Imura, T. Nagahara, H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005). [CrossRef] [PubMed]
  32. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, N. F. van Hulst, “Single molecule mapping of the optical field distribution of probes for near-field microscopy,” J. Microsc. 194(2–3), 477–482 (1999). [CrossRef] [PubMed]
  33. F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012). [CrossRef] [PubMed]
  34. A. Drezet, M. J. Nasse, S. Huant, J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004). [CrossRef]
  35. E. A. Coronado, G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003). [CrossRef]
  36. M. Paulus, P. Gay-Balmaz, O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(4), 5797–5807 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited