OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12200–12210

Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates

Francesca Di Niso, Caterina Gaudiuso, Teresa Sibillano, Francesco Paolo Mezzapesa, Antonio Ancona, and Pietro Mario Lugarà  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12200-12210 (2014)
http://dx.doi.org/10.1364/OE.22.012200


View Full Text Article

Acrobat PDF (1614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the incubation effect during laser ablation of stainless steel with ultrashort pulses to boost the material removal efficiency at high repetition rates. The multi-shot ablation threshold fluence has been estimated for two pulse durations, 650-fs and 10-ps, in a range of repetition rates from 50kHz to 1 MHz. Our results show that the threshold fluence decreases with the number of laser pulses N due to damage accumulation mechanisms, as expected. Moreover, approaching the MHz regime, the onset of heat accumulation enhances the incubation effect, which is in turn lower for shorter pulses at repetition rates below 600 kHz. A saturation of the threshold fluence value is shown to occur for a significantly high number of pulses, and well fitted by a modified incubation model.

© 2014 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3390) Lasers and laser optics : Laser materials processing
(140.6810) Lasers and laser optics : Thermal effects
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Laser Microfabrication

History
Original Manuscript: February 20, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 11, 2014
Published: May 13, 2014

Citation
Francesca Di Niso, Caterina Gaudiuso, Teresa Sibillano, Francesco Paolo Mezzapesa, Antonio Ancona, and Pietro Mario Lugarà, "Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates," Opt. Express 22, 12200-12210 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12200


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” Proc. SPIE 8243, 824307 (2012). [CrossRef]
  2. J. Schille, U. Loeschner, R. Ebert, P. Scully, N. Goddard, and H. Exner, “Laser micro processing using a high repetition rate femtosecond laser,” in Proceedings of 29th International Congress on Application of Laser & Electro-Optics,(Anaheim, CA, USA, 2010), paper #189, pp.1491–1499.
  3. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” in Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing 2011 (Munich, 2011), pp. 164–171.
  4. G. Račiukaitis, M. Brikas, P. Gečys, M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” Proc. SPIE 7005, 70052L (2008). [CrossRef]
  5. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008). [CrossRef] [PubMed]
  6. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009). [CrossRef] [PubMed]
  7. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004). [CrossRef]
  8. G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” J. Laser Micro Nanoen. 4(3), 186–191 (2009). [CrossRef]
  9. Y. Jee, M. F. Becker, R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988). [CrossRef]
  10. D. Gómez, I. Goenaga, “On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels,” Appl. Surf. Sci. 253(4), 2230–2236 (2006). [CrossRef]
  11. X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006). [CrossRef]
  12. B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013). [CrossRef]
  13. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999). [CrossRef]
  14. J. Thorstensen, S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012). [CrossRef]
  15. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  16. D. Perez, L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited