OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12226–12237

Monolithic erbium- and ytterbium-doped microring lasers on silicon chips

Jonathan D. B. Bradley, Ehsan Shah Hosseini, Purnawirman, Zhan Su, Thomas N. Adam, Gerald Leake, Douglas Coolbaugh, and Michael R. Watts  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12226-12237 (2014)
http://dx.doi.org/10.1364/OE.22.012226


View Full Text Article

Enhanced HTML    Acrobat PDF (1693 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3615) Lasers and laser optics : Lasers, ytterbium
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 20, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: April 29, 2014
Published: May 13, 2014

Citation
Jonathan D. B. Bradley, Ehsan Shah Hosseini, Purnawirman, Zhan Su, Thomas N. Adam, Gerald Leake, Douglas Coolbaugh, and Michael R. Watts, "Monolithic erbium- and ytterbium-doped microring lasers on silicon chips," Opt. Express 22, 12226-12237 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004). [CrossRef] [PubMed]
  2. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  3. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  4. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  5. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013). [CrossRef] [PubMed]
  6. L. Pavesi, “Routes towards silicon-based lasers,” Mater. Today 8(1), 18–25 (2005). [CrossRef]
  7. D. Liang, J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010). [CrossRef]
  8. Z. Fang, Q. Y. Chen, C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013). [CrossRef]
  9. Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, “Neodymium-doped silica optical waveguide laser on silicon substrate,” IEEE Photon. Technol. Lett. 1(11), 349–350 (1989). [CrossRef]
  10. T. Kitagawa, M. Hattori, M. Shimizu, Y. Ohmori, M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” IEEE Photon. Technol. Lett. 27, 334–335 (1991).
  11. K. Hattori, F. Bilodeau, B. Malo, J. Albert, D. C. Jihnson, T. Kitagawa, Y. Hibino, S. Thériault, K. O. Hill, “Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors,” Electron. Lett. 30(16), 1311–1312 (1994). [CrossRef]
  12. J. Hübner, S. Guldberg-Kjaer, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Jensen, D. Zauner, T. Feuchter, “Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys. B 73(5-6), 435–438 (2001). [CrossRef]
  13. B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” IEEE J. Quantum Electron. 41(12), 1565–1573 (2005). [CrossRef]
  14. D. Pudo, H. Byun, J. Chen, J. Sickler, F. X. Kärtner, E. P. Ippen, “Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers,” Opt. Express 16(23), 19221–19231 (2008). [CrossRef] [PubMed]
  15. A. Z. Subramani, C. J. Oton, D. P. Shepherd, J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” IEEE Photon. Technol. Lett. 22(21), 1571–1573 (2010). [CrossRef]
  16. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010). [CrossRef] [PubMed]
  17. E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. Wörhoff, M. Pollnau, R. M. de Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35(14), 2394–2396 (2010). [CrossRef] [PubMed]
  18. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011). [CrossRef] [PubMed]
  19. J. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, E. Shah Hosseini, M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013). [CrossRef] [PubMed]
  20. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38(22), 4825–4828 (2013). [CrossRef] [PubMed]
  21. E. Shah Hosseini, J. D. B. Purnawirman, J. Bradley, G. Sun, T. N. Leake, D. Adam, Coolbaugh, M. R. Watts, “CMOS compatible 75 mW erbium doped distributed feedback laser,” Opt. Lett. (submitted).
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  23. M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  24. A. Polman, B. Min, J. Kalkman, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold erbium-implanted toroidal microlaser on silicon,” Appl. Phys. Lett. 84(7), 1037–1039 (2004). [CrossRef]
  25. L. Yang, T. Carmon, B. Min, S. M. Spillane, K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 091114 (2005). [CrossRef]
  26. M. Borselli, High-Q Microresonators as Lasing Elements for Silicon Photonics (Ph.D. Thesis, California Institute of Technology, 2006).
  27. T. J. Kippenberg, J. Kalkman, A. Polman, K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006). [CrossRef]
  28. E. P. Ostby, L. Yang, K. J. Vahala, “Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007). [CrossRef] [PubMed]
  29. H.-S. Hsu, C. Cai, A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  30. S. Mehrabani, A. M. Armani, “Blue upconversion laser based on thulium-doped silica microcavity,” Opt. Lett. 38(21), 4346–4349 (2013). [CrossRef] [PubMed]
  31. A. J. Maker, A. M. Armani, “Nanowatt threshold, alumina sensitized neodymium laser integrated on silicon,” Opt. Express 21(22), 27238–27245 (2013). [CrossRef] [PubMed]
  32. D. S. Gardner, M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005). [CrossRef]
  33. J. S. Chang, S. C. Eom, G. Y. Sung, J. H. Shin, “On-chip, planar integration of Er doped silicon-rich silicon nitride microdisk with SU-8 waveguide with sub-micron gap control,” Opt. Express 17(25), 22918–22924 (2009). [CrossRef] [PubMed]
  34. D. W. Prather, B. Redding, T. Creazzo, E. Marchena, S. Shi, “Integration of silicon nanocrystals and erbium ring cavities for a silicon pumped Er:SiO2 laser,” J. Nanosci. Nanotechnol. 10(3), 1643–1649 (2010). [CrossRef] [PubMed]
  35. M. Ghulinyan, R. Guider, G. Pucker, L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguides,” IEEE Photon. Technol. Lett. 23(16), 1166–1168 (2011). [CrossRef]
  36. F. F. Lupi, D. Navarro-Urrios, J. Rubio-Garcia, J. Monserrat, C. Dominquez, P. Pellegrino, B. Garrido, “Visible light emitting Si-rich Si3N4μ-disk resonators for sensoristic applications,” J. Lightwave Technol. 30(1), 169–174 (2012). [CrossRef]
  37. Purnawirman, E. Shah Hosseini, A. Baldycheva, J. Sun, J. D. B. Bradley, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Erbium-doped laser with multi-segmented silicon nitride structure,” in Optical Fiber Communication Conference Proceedings, in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W4E.5.
  38. K. Wörhoff, J. D. B. Bradley, F. Ay, D. Geskus, T. Blauwendraat, M. Pollnau, “Reliable low-cost fabrication of low-loss Al2O3:Er3+ waveguides with 5.4-dB optical gain,” IEEE J. Quantum Electron. 45(5), 454–461 (2009). [CrossRef]
  39. E. H. Bernhardi, Bragg-Grating-Based Rare-Earth-Ion-Doped Channel Waveguide Lasers and their Applications (Ph.D. Thesis. University of Twente, 2012).
  40. J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27(2), 187–196 (2010). [CrossRef]
  41. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  42. L. Yang, K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003). [CrossRef] [PubMed]
  43. L. He, S. K. Özdemir, J. Zhu, L. Yang, “Self-pulsation in fiber-coupled, on-chip microcavity lasers,” Opt. Lett. 35(2), 256–258 (2010). [CrossRef] [PubMed]
  44. L. He, S. K. Özdemir, L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7(1), 60–82 (2013). [CrossRef]
  45. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, M. K. Smit, “Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996). [CrossRef]
  46. E. P. Ostby, K. J. Vahala, “Yb-doped glass microcavity laser operation in water,” Opt. Lett. 34(8), 1153–1155 (2009). [CrossRef] [PubMed]
  47. L. He, S. K. Özdemir, J. Zhu, W. Kim, L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited