OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12248–12254

Enhanced light emission from Ge quantum dots in photonic crystal ring resonator

Yong Zhang, Cheng Zeng, Danping Li, Xiangjie Zhao, Ge Gao, Jinzhong Yu, and Jinsong Xia  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12248-12254 (2014)
http://dx.doi.org/10.1364/OE.22.012248


View Full Text Article

Enhanced HTML    Acrobat PDF (2771 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light emitter based on Ge quantum dots embedded in photonic crystal ring resonator is designed and fabricated. Six sharp resonant peaks dominate the photoluminescence (PL) spectrum ranging from 1500 to 1600 nm at room temperature. The light emission enhancement is due to Purcell effect and high collection efficiency of the PCRR verified by calculated far-field patterns. The Purcell factor of the PCRR is estimated from enhancement factor and increased collection efficiency. The linewidth of the emission of a single Ge quantum dot is estimated from the Purcell factor.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3948) Lasers and laser optics : Microcavity devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 7, 2014
Revised Manuscript: May 4, 2014
Manuscript Accepted: May 4, 2014
Published: May 13, 2014

Citation
Yong Zhang, Cheng Zeng, Danping Li, Xiangjie Zhao, Ge Gao, Jinzhong Yu, and Jinsong Xia, "Enhanced light emission from Ge quantum dots in photonic crystal ring resonator," Opt. Express 22, 12248-12254 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010). [CrossRef]
  2. M. Wang, X. Huang, J. Xu, W. Li, Z. Liu, K. Chen, “Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices,” Appl. Phys. Lett. 72(6), 722–724 (1998). [CrossRef]
  3. J. Xia, Y. Ikegami, K. Nemoto, Y. Shiraki, “Observation of whispering-gallery modes in Si microdisks at room temperature,” Appl. Phys. Lett. 90(14), 141102 (2007). [CrossRef]
  4. S. Nakayama, S. Ishida, S. Iwamoto, Y. Arakawa, “Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett. 98(17), 171102 (2011). [CrossRef]
  5. A. Shakoor, R. Lo Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, L. O’Faolain, “Room temperature all‐silicon photonic crystal nanocavity light emitting diode at sub‐bandgap wavelengths,” Laser & Photonics Reviews 7(1), 114–121 (2013). [CrossRef]
  6. W. Yue, Z. Jiashun, W. Yuanda, A. Junming, L. Jianguang, W. Hongjie, H. Xiongwei, “Light emission enhancement from Er-doped silicon photonic crystal double-heterostructure microcavity,” IEEE Photon. Technol. Lett. 24(2), 110–112 (2012). [CrossRef]
  7. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007). [CrossRef] [PubMed]
  8. Y. De Koninck, G. Roelkens, R. Baets, “Design of a hybrid III-V-on-silicon microlaser with resonant cavity mirrors,” IEEE Photon. J. 5(2), 2700413 (2013). [CrossRef]
  9. S. Fukatsu, H. Sunamura, Y. Shiraki, S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett. 71(2), 258–260 (1997). [CrossRef]
  10. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett. 77(12), 1822–1824 (2000). [CrossRef]
  11. J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006). [CrossRef]
  12. M. El Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, P. Boucaud, O. Kermarrec, Y. Campidelli, D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express 16(12), 8780–8791 (2008). [CrossRef] [PubMed]
  13. X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012). [CrossRef]
  14. Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, J. Xia, “Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity,” IEEE Photon. J. 5(5), 4500607 (2013). [CrossRef]
  15. X. Xu, T. Tsuboi, T. Chiba, N. Usami, T. Maruizumi, Y. Shiraki, “Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities,” Opt. Express 20(13), 14714–14721 (2012). [CrossRef] [PubMed]
  16. Z. Qiang, W. Zhou, R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15(4), 1823–1831 (2007). [CrossRef] [PubMed]
  17. S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, Y.-H. Lee, J.-S. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81(14), 2499–2501 (2002). [CrossRef]
  18. X. Ren, L. Feng, Z. Lin, J. Feng, “Experimental demonstration of ultracompact air hole photonic crystal ring resonator fabricated on silicon-on-insulator wafer,” Opt. Lett. 38(9), 1416–1418 (2013). [CrossRef] [PubMed]
  19. Y. Zhang, C. Zeng, D. Li, G. Gao, Z. Huang, J. Yu, J. Xia, “High-quality-factor photonic crystal ring resonator,” Opt. Lett. 39(5), 1282–1285 (2014). [CrossRef] [PubMed]
  20. F. Monifi, A. Ghaffari, M. Djavid, M. S. Abrishamian, “Three output port channel-drop filter based on photonic crystals,” Appl. Opt. 48(4), 804–809 (2009). [CrossRef] [PubMed]
  21. M. Djavid, F. Monifi, A. Ghaffari, M. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281(15-16), 4028–4032 (2008). [CrossRef]
  22. P. A. Postigo, A. R. Alija, L. J. Martínez, M. L. Dotor, D. Golmayo, J. Sánchez-Dehesa, C. Seassal, P. Viktorovitch, M. Galli, A. Politi, M. Patrini, L. C. Andreani, “Laser nanosources based on planar photonic crystals as new platforms for nanophotonic devices,” Photonics Nanostruct. Fundam. Appl. 5(2-3), 79–85 (2007). [CrossRef]
  23. T. T. Mai, F.-L. Hsiao, C. Lee, W. Xiang, C.-C. Chen, W. K. Choi, “Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors,” Sens. Actuators A Phys. 165(1), 16–25 (2011). [CrossRef]
  24. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90(24), 241117 (2007). [CrossRef]
  25. A. Shakoor, R. Lo Savio, S. L. Portalupi, D. Gerace, L. C. Andreani, M. Galli, T. F. Krauss, L. O’Faolain, “Enhancement of room temperature sub-bandgap light emission from silicon photonic crystal nanocavity by Purcell effect,” Physica B 407(20), 4027–4031 (2012). [CrossRef]
  26. E. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  27. I. Sychugov, R. Juhasz, J. Valenta, J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited