OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12255–12272

Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data

Omar Gutierrez-Navarro, Daniel U. Campos-Delgado, Edgar R. Arce-Santana, Kristen C. Maitland, Shuna Cheng, Joey Jabbour, Bilal Malik, Rodrigo Cuenca, and Javier A. Jo  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12255-12272 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications. This work presents a new methodology to estimate the number of potential endogenous fluorophores present in biological tissue samples from time-domain m-FLIM data. Furthermore, a completely blind linear unmixing algorithm is proposed. The method was validated using both synthetic and experimental m-FLIM data. The experimental m-FLIM data include in-vivo measurements from healthy and cancerous hamster cheek-pouch epithelial tissue, and ex-vivo measurements from human coronary atherosclerotic plaques. The analysis of m-FLIM data from in-vivo hamster oral mucosa identified healthy from precancerous lesions, based on the relative concentration of their characteristic fluorophores. The algorithm also provided a better description of atherosclerotic plaques in term of their endogenous fluorophores. These results demonstrate the potential of this methodology to provide quantitative description of tissue biochemical composition.

© 2014 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 17, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 2, 2014
Published: May 13, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Omar Gutierrez-Navarro, Daniel U. Campos-Delgado, Edgar R. Arce-Santana, Kristen C. Maitland, Shuna Cheng, Joey Jabbour, Bilal Malik, Rodrigo Cuenca, and Javier A. Jo, "Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data," Opt. Express 22, 12255-12272 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159, 152–161 (2008). [CrossRef] [PubMed]
  2. K. S. M. Mycek, N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. endosc. 48, 390–394 (1998). [CrossRef] [PubMed]
  3. L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt. 15, 011106 (2010). [CrossRef] [PubMed]
  4. J. A. Jo, B. Applegate, J. Park, S. Shrestha, P. Pande, I. Gimenez-Conti, J. Brandon, “In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer,” IEEE Trans. Biomed. Eng. 57, 2596–2599 (2010). [CrossRef] [PubMed]
  5. J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,” IEEE J. Sel. Topics Appl. Earth Observ. 5, 354–379 (2012). [CrossRef]
  6. H. Xu, B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14, 064011 (2009). [CrossRef]
  7. S. S. Vogel, P. S. Blank, S. V. Koushik, C. Thaler, “Spectral imaging and its use in the measurement of Förster resonance energy transfer in living cells,” in Fret and Flim Techniques. Laboratory Techniques in Biochemistry and Molecular Biology, T. Gadella, ed. 33, 351–394, (Elsevier, 2009). [CrossRef]
  8. J. G. Gert-JanKremers, Erik B. van Munster, J. Theodorus, W. J. Gadella, “Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy,” Biophys. J. 95, 378–389 (2008). [CrossRef]
  9. O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, J. Jo, “A fully constrained optimization method for time-resolved multi-spectral fluorescence lifetime imaging microscopy data unmixing,” IEEE Trans. Biomed. Eng. 60, 1711–1720 (2013). [CrossRef] [PubMed]
  10. O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18, 606–617 (2014). [CrossRef] [PubMed]
  11. J. Harsanyi, W. Farrand, C.-I. Chang, “Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained rms error minimization,” presented at the 9th Thematic Conference on Geological Remote Sensing, Pasadena, California, USA (1993).
  12. C.-I. Chang, Q. Du, “Estimation of number of spectrally distinct signal sources in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 42, 608–619 (2004). [CrossRef]
  13. J. Bioucas-Dias, J. Nascimento, “Hyperspectral subspace identification,” IEEE Trans. Geosci. Remote Sens. 46, 2435–2445 (2008). [CrossRef]
  14. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr. 19, 716–723 (1974). [CrossRef]
  15. J. Rissanen, “Modeling by shortest data description,” Automatica 14, 465–471 (1978). [CrossRef]
  16. R. Heylen, P. Scheunders, “Hyperspectral intrinsic dimensionality estimation with nearest-neighbor distance ratios,” IEEE J. Sel. Topics Appl. Earth Observ. 6, 570–579 (2013). [CrossRef]
  17. C. Andreou, V. Karathanassi, “Estimation of the number of endmembers using robust outlier detection method,” IEEE J. Sel. Topics Appl. Earth Observ. 7, 247–256 (2014). [CrossRef]
  18. A. Ambikapathi, T.-H. Chan, C.-Y. Chi, K. Keizer, “Hyperspectral data geometry-based estimation of number of endmembers using p -norm-based pure pixel identification algorithm,” IEEE Trans. Geosci. Remote Sens. 51, 2753–2769 (2013). [CrossRef]
  19. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006). [CrossRef]
  20. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” Molecular Biology 95, 245–265 (2005).
  21. P. Vallotton, A. Phatak, M. Berman, “Spectral Imaging and Unmixing,” in Fluorescence Applications in Biotechnology and Life Sciences, E. M. Goldys, ed. (Wiley-Blackwell, 2009).
  22. M. Craig, “Minimum-volume transforms for remotely sensed data,” IEEE Trans. Geosci. Remote Sens. 32, 542–552 (1994). [CrossRef]
  23. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004). [CrossRef]
  24. D. Manolakis, G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29–43 (2002). [CrossRef]
  25. F. W. Young, J. de Leeuw, Y. Takane, “Regression with qualitative and quantitative variables: An alternating least squares method with optimal features,” Psychometrika 41, 505–526 (1976). [CrossRef]
  26. B. C. Levy, Principles of Signal Detection and Parameter Estimation (Springer Publishing Company, 2008). [CrossRef]
  27. B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81, 1265–1274 (2001). [CrossRef] [PubMed]
  28. J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220, 394–401 (2011). [CrossRef] [PubMed]
  29. J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18, 046012 (2013). [CrossRef] [PubMed]
  30. Robert M. Clegg, A. Periasamy, FLIM Microscopy in Biology and Medicine (Chapman and Hall/CRC, 2009). [CrossRef]
  31. P. Pande, J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (flim) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58, 172–181 (2011). [CrossRef]
  32. J. Nocedal, S. J. Wright, Numerical Optimization (Springer, 2000).
  33. K. Arakawa, K. Isoda, T. Ito, K. Nakajima, T. Shibuya, F. Ohsuzu, “Fluorescence analysis of biochemical constituents identifies atherosclerotic plaque with a thin fibrous cap,” Arterioscler. Thromb. Vasc. 22, 1002–1007 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited