OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12273–12282

A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling

Ori Golani, Luca Mauri, Fabiano Pasinato, Cristian Cattaneo, Guido Consonnni, Stefano Balsamo, and Dan M. Marom  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12273-12282 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new type of photonic analog-to-digital converter (ADC), designed for high-resolution (>7 bit) and high sampling rates (scalable to tens of GS/s). It is based on encoding the input analog voltage signal onto the phase of an optical pulse stream originating from a mode-locked laser, and uses spatial oversampling as a means to improve the conversion resolution. This paper describes the concept of spatial oversampling and draws its similarities to the commonly used temporal oversampling. The design and fabrication of a LiNbO3/silica hybrid photonic integrated circuit for implementing the spatial oversampling is shown, and its abilities are demonstrated experimentally by digitizing gigahertz signals (frequencies up to 18GHz) at an undersampled rate of 2.56GS/s with a conversion resolution of up to 7.6 effective bits. Oversampling factors of 1-4 are demonstrated.

© 2014 Optical Society of America

OCIS Codes
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:

Original Manuscript: March 17, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: April 30, 2014
Published: May 13, 2014

Ori Golani, Luca Mauri, Fabiano Pasinato, Cristian Cattaneo, Guido Consonnni, Stefano Balsamo, and Dan M. Marom, "A photonic analog-to-digital converter using phase modulation and self-coherent detection with spatial oversampling," Opt. Express 22, 12273-12282 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999). [CrossRef]
  2. A. Bartels, S. A. Diddams, T. M. Ramond, L. Hollberg, “Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator,” Opt. Lett. 28(8), 663–665 (2003). [CrossRef] [PubMed]
  3. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007). [CrossRef] [PubMed]
  4. A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, S. Radic, “Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source,” Opt. Express 20(26), B419–B427 (2012). [CrossRef] [PubMed]
  5. A. O. J. Wiberg, D. J. Esman, L. Liu, Z. I. Tong, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 74 GHz parametric optical sampled analog-to-digital conversion,” Optical Communication (ECOC 2013).
  6. T. Satoh, K. Takahashi, H. Matsui, K. Itoh, T. Konishi, “10-GS/s 5-bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 24(10), 830–832 (2012).
  7. C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003). [CrossRef] [PubMed]
  8. J. Stigwall, S. Galt, “Demonstration and Analysis of a 40-Gigasample/s Interferometric Analog-to-Digital Converter,” J. Lightwave Technol. 24(3), 1247–1256 (2006). [CrossRef]
  9. M. Jarrahi, R. F. W. Pease, D. A. B. Miller, T. H. Lee, “Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 56(9), 2143–2150 (2008). [CrossRef]
  10. W. Li, H. Zhang, Q. Wu, Z. Zhang, M. Yao, “All-Optical Analog-to-Digital Conversion Based on Polarization-Differential Interference and Phase Modulation,” IEEE Photon. Technol. Lett. 19(8), 625–627 (2007). [CrossRef]
  11. A. J. Price, R. Zanoni, and P. J. Morgan, “Photonic analog-to-digital converter,” US Patent No. 7876246 B1, (2011).
  12. T. D. Gathman, J. F. Buckwalter, “An 8-bit Integrate-and-Sample Receiver for Rate-Scalable Photonic Analog-to-Digital Conversion,” IEEE Trans. Microw. Theory Tech. 60(12), 3798–3809 (2012). [CrossRef]
  13. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20(4), 4454–4469 (2012). [CrossRef] [PubMed]
  14. D. R. Reilly, S. X. Wang, and G. S. Kanter, “Optical under-sampling for high resolution analog-to-digital conversion,” in Proceedings of Avionics, Fiber- Optics and Photonics Technology Conference (AVFOP), 35–36 (2011).
  15. D. Sinefeld, Y. Fattal, D. M. Marom, “Generation of WDM adaptive-rate pulse bursts by cascading narrow/wideband tunable optical dispersion compensators,” Opt. Lett. 37(20), 4290–4292 (2012). [CrossRef] [PubMed]
  16. D. Sinefeld, D. Shayovitz, O. Golani, D. M. Marom, “Tunable WDM Sampling Pulse Streams using a Spatial Phase Modulator in a Biased Pulse Shaper,” Opt. Lett. 39(3), 642–645 (2014). [CrossRef] [PubMed]
  17. J. van Howe, J. Hansryd, C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004). [CrossRef] [PubMed]
  18. H. Q. Lam, K. E. K. Lee, P. H. Lim, “Time- and wavelength-interleaved optical pulse train generation based on dispersion spreading and sectional compression,” Opt. Lett. 37(12), 2349–2351 (2012). [CrossRef] [PubMed]
  19. J. Vasseur, M. Hanna, J. M. Dudley, J.-P. Goedgebuer, “Generation of interleaved pulses on time-wavelength grid by actively modelocked fibre laser,” Electron. Lett. 40(14), 901 (2004). [CrossRef]
  20. H. F. Taylor, “An optical analog-to-digital converter - Design and analysis,” IEEE J. Quantum Electron. 15(4), 210–216 (1979). [CrossRef]
  21. L. Tan and D. S. Processing, Fundamentals and Applications, (Academic Press. 2008).
  22. P. Carbone, D. Petri, “Effect of Additive Dither on the Resolution of Ideal Quantizers,” IEEE Trans. Instrum. Meas. 43(3), 389–396 (1994).
  23. S.-H. Jeong, K. Morito, “Optical 60° hybrid for demodulating six-level DPSK signal,” Opt. Lett. 36(3), 322–324 (2011). [CrossRef] [PubMed]
  24. S.-H. Jeong, K. Morito, “Optical 45° hybrid for demodulating 8-ary DPSK signal,” Opt. Express 18(8), 8482–8490 (2010). [CrossRef] [PubMed]
  25. R. M. Gray, D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, 44(6), 2325–2383 (1998). [CrossRef]
  26. L. G. Kazovsky, L. Curtis, W. C. Young, N. K. Cheung, “All-fiber 90 ° optical hybrid for coherent communications,” Appl. Opt. 26(3), 437–439 (1987). [CrossRef] [PubMed]
  27. L. B. Soldano, E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  28. N. G. Walker, J. E. Carroll, “Simultaneous phase and amplitude measurements on optical signals using a multiport junction,” Electron. Lett. 20(23), 981–983 (1984). [CrossRef]
  29. C. R. Doerr, D. M. Gill, A. H. Gnauck, L. L. Buhl, P. J. Winzer, M. A. Cappuzzo, A. Wong-Foy, E. Y. Chen, L. T. Gomez, “Monolithic Demodulator for 40-Gb/s DQPSK Using a Star Coupler,” J. Lightwave Technol. 24(1), 171–174 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited