OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12296–12306

Theoretical investigation of the more suitable rare earth to achieve high gain in waveguide based on silica containing silicon nanograins doped with either Nd3+ or Er3+ ions

Alexandre Fafin, Julien Cardin, Christian Dufour, and Fabrice Gourbilleau  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12296-12306 (2014)
http://dx.doi.org/10.1364/OE.22.012296


View Full Text Article

Enhanced HTML    Acrobat PDF (2631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comparative study of the gain achievement in a waveguide whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd3+) or erbium ions (Er3+). By means of an auxiliary differential equation and finite difference time domain (ADE-FDTD) approach that we developed, we investigate the steady states regime of both rare earths ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 104 mW/mm2. Moreover, the achievable gain has been estimated in this pumping range. The Nd3+ doped waveguide shows a higher gross gain per unit length at 1064 nm (up to 30 dB/cm) than the one with Er3+ doped active layer at 1532 nm (up to 2 dB/cm). Taking into account the experimental background losses we demonstrate that a significant positive net gain can only be achieved with the Nd3+ doped waveguide.

© 2014 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Materials

History
Original Manuscript: March 24, 2014
Revised Manuscript: May 5, 2014
Manuscript Accepted: May 5, 2014
Published: May 13, 2014

Citation
Alexandre Fafin, Julien Cardin, Christian Dufour, and Fabrice Gourbilleau, "Theoretical investigation of the more suitable rare earth to achieve high gain in waveguide based on silica containing silicon nanograins doped with either Nd3+ or Er3+ ions," Opt. Express 22, 12296-12306 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12296


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Daldosso, L. Pavesi, “Nanosilicon photonics,” Laser Photonics Rev. 3, 508–534 (2009). [CrossRef]
  2. G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, 2010). [CrossRef]
  3. O. Lumholt, A. Bjarklev, T. Rasmussen, C. Lester, “Rare earth-doped integrated glass components: modeling and optimization,” J. Lightwave Technol. 13, 275–282 (1995). [CrossRef]
  4. A. Podhorodecki, J. Misiewicz, F. Gourbilleau, J. Cardin, C. Dufour, “High energy excitation transfer from silicon nanocrystals to neodymium ions in silicon-rich oxide film,” Electrochem. Solid-State Lett. 13, K26–K28 (2010). [CrossRef]
  5. A. Polman, F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21, 871–892 (2004). [CrossRef]
  6. A. N. MacDonald, A. Hryciw, Quan Li, A. Meldrum, “Luminescence of Nd-enriched silicon nanoparticle glasses,” Opt. Mater. 28, 820–824 (2006). [CrossRef]
  7. A. Fafin, J. Cardin, C. Dufour, F. Gourbilleau, “Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem,” Opt. Express 21, 24171–24184 (2013). [CrossRef] [PubMed]
  8. P. Pirasteh, J. Charrier, Y. Dumeige, Y. G. Boucher, O. Debieu, F. Gourbilleau, “Study of optical losses of Nd3+ doped silicon rich silicon oxide for laser cavity,” Thin Solid Films 520, 4026–4030 (2012). [CrossRef]
  9. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, C. Garcia, P. Pellegrino, B. Garrido, C. Sada, G. Battaglin, F. Gourbilleau, R. Rizk, L. Pavesi, “Er-Coupled Si Nanocluster Waveguide,” IEEE J. Sel. Topics Quantum Electron. 12, 1607–1617 (2006). [CrossRef]
  10. W. L. Barnes, R. Laming, E. J. Tarbox, P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum. Electron. 27, 1004–1010 (1991). [CrossRef]
  11. E. O. Serqueira, N. O. Dantas, A. F. G. Monte, M. J. V. Bell, “Judd ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352, 3628–3632 (2006). [CrossRef]
  12. A. Taflove, Computational electrodynamics: The finite-difference time-domain method. (Artech House, Boston, 1995).
  13. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  14. A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998). [CrossRef]
  15. C. Dufour, J. Cardin, O. Debieu, A. Fafin, F. Gourbilleau, “Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method,” Nanoscale Res. Lett. 6, 1–5 (2011). [CrossRef]
  16. A. J. Kenyon, C. E. Chryssou, C. W. Pitt, T. Shimizu-Iwayama, D. E. Hole, N. Sharma, C. J. Humphreys, “Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms,” J. Appl. Phys. 91, 367–374 (2002). [CrossRef]
  17. B. J. Ainslie, S. P. Craig, R. Wyatt, K. Moulding, “Optical and structural analysis of neodymium-doped silica-based optical fibre,” Matter. Lett. 8, 204–208 (1989). [CrossRef]
  18. M. Govoni, I. Marri, S. Ossicini, “Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics,” Nat. Photonics 6, 672–679 (2012). [CrossRef]
  19. F. Priolo, G. Franzo, D. Pacifici, V. Vinciguerra, F. Iacona, A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys. 89, 264–272 (2001). [CrossRef]
  20. D. Pacifici, G. Franzo, F. Priolo, F. Iacona, L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B 67, 245301 (2003). [CrossRef]
  21. V. Toccafondo, S. Faralli, F. Di Pasquale, “Evanescent multimode longitudinal pumping scheme for sinanocluster sensitized Er3 + doped waveguide amplifiers,” J. Lightwave Technol. 26, 3584–3591 (2008). [CrossRef]
  22. S. L. Oliveira, D. F. de Sousa, A. A. Andrade, L. A. O. Nunes, T. Catunda, “Upconversion in Nd3+-doped glasses: Microscopic theory and spectroscopic measurements,” J. Appl. Phys. 103, 023103 (2008). [CrossRef]
  23. J. Yang, K. van Dalfsen, F. Ay, M. Pollnau, “High-gain Al2O3: Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm,” Appl. Phys. B 101, 119–127 (2010). [CrossRef]
  24. A. E. Siegman., Lasers. Mill Valley. (University Science Books, 1986).
  25. H.-S. Han, S.-Y. Seo, J. H. Shin, N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720–3722 (2002). [CrossRef]
  26. N. Daldosso, D. Navarro-Urrios, M. Melchiorri, L. Pavesi, F. Gourbilleau, M. Carrada, R. Rizk, C. Garcia, P. Pellegrino, B. Garrido, L. Cognolato, “Absorption cross section and signal enhancement in er-doped si nanocluster rib-loaded waveguides,” Appl. Phys. Lett. 86, 261103 (2005). [CrossRef]
  27. D. Navarro-Urrios, F. Ferrarese Lupi, N. Prtljaga, A. Pitanti, O. Jambois, J. M. Ramirez, Y. Berencen, N. Daldosso, B. Garrido, L. Pavesi, “Copropagating pump and probe experiments on Si-nc in SiO2 rib waveguides doped with er: The optical role of non-emitting ions,” Appl. Phys. Lett. 99, 231114 (2011). [CrossRef]
  28. D. R. Zimmerman, L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22, 63 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited