OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12398–12409

Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy

P. Zhang, P. M. Goodwin, and J. H. Werner  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12398-12409 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A substantial advantage of stimulated emission depletion (STED) microscopy over other super-resolution methods is that images can be acquired in real-time without any post-processing. However imaging speed and photodamage are two major concerns for STED imaging of whole cells. Here we propose a new microscopy method we have termed Bessel-Beam STED (or BB-STED) that overcomes both of these limitations of conventional STED microscopy. In the proposed method, rather than exciting a single STED spot in the sample, an entire line of the sample is illuminated. This line-scanning technique dramatically increases the speed of STED. In addition, plane-illumination by scanning of the line across the focal plane of a detection objective limits the light to a thin layer of the sample and thus significantly reduces photobleaching and photodamage above and below the focal plane compared to epi-illumination. Using the organic dye Atto647N as an example, we calculated the STED power required to break the diffraction limit. The results presented here will be used to guide future experimental designs.

© 2014 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(180.1790) Microscopy : Confocal microscopy

ToC Category:

Original Manuscript: March 18, 2014
Revised Manuscript: May 7, 2014
Manuscript Accepted: May 8, 2014
Published: May 14, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

P. Zhang, P. M. Goodwin, and J. H. Werner, "Fast, super resolution imaging via Bessel-beam stimulated emission depletion microscopy," Opt. Express 22, 12398-12409 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anatomie 9, 413–418 (1873).
  2. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer, 1993).
  3. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  4. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [CrossRef] [PubMed]
  8. C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010). [CrossRef] [PubMed]
  9. S. Quirin, S. R. P. Pavani, R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A. 109(3), 675–679 (2012). [CrossRef] [PubMed]
  10. B. Huang, H. Babcock, X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143(7), 1047–1058 (2010). [CrossRef] [PubMed]
  11. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009). [CrossRef] [PubMed]
  12. T. A. Klar, S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999). [CrossRef] [PubMed]
  13. S. W. Hell, M. Kroug, “Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995). [CrossRef]
  14. M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  15. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]
  16. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  17. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A. 106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  18. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  19. M. Dyba, S. W. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [CrossRef] [PubMed]
  20. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S. W. Hell, “Spherical nanosized focal spot unravels the interior of cells,” Nat. Methods 5(6), 539–544 (2008). [CrossRef] [PubMed]
  21. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010). [CrossRef] [PubMed]
  22. J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013). [CrossRef] [PubMed]
  23. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011). [CrossRef] [PubMed]
  24. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  25. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011). [CrossRef] [PubMed]
  26. F. O. Fahrbach, A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012). [CrossRef] [PubMed]
  27. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, A. Rohrbach, “Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation,” Opt. Express 21(11), 13824–13839 (2013). [CrossRef] [PubMed]
  28. P. Zhang, P. M. Goodwin, J. H. Werner, “Fast, 3D imaging via confocal line scanning of a Bessel beam using a single galvo mirror,” Proc. SPIE 8947, 1K–8K (2014).
  29. M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms, “STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution,” Biophys. J. 100(8), L43–L45 (2011). [CrossRef] [PubMed]
  30. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  32. M. Leutenegger, C. Eggeling, S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [CrossRef] [PubMed]
  33. E. Rittweger, B. Rankin, V. Westphal, S. Hell, “Fluorescence depletion mechanisms in super-resolving STED microscopy,” Chem. Phys. Lett. 442(4–6), 483–487 (2007). [CrossRef]
  34. V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  35. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012). [CrossRef] [PubMed]
  36. G. Moneron, S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009). [CrossRef] [PubMed]
  37. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151(6), 1370–1385 (2012). [CrossRef] [PubMed]
  38. P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited