OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12410–12423

Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond

Laura Kipfstuhl, Felix Guldner, Janine Riedrich-Möller, and Christoph Becher  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12410-12423 (2014)
http://dx.doi.org/10.1364/OE.22.012410


View Full Text Article

Enhanced HTML    Acrobat PDF (1605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photonic and phononic crystal (phoxonic crystal PxC) is a periodically patterned material that can at the same time localize optical and mechanical modes. Here we theoretically model one-dimensional PxC in diamond and find high quality mechanical resonances with very high frequencies > 10 GHz and optical properties comparable to those of PxC in other materials. The simultaneous confinement of photons and phonons leads to an optomechanical interaction that we calculate in a perturbation approach. The optomechanical coupling strengths reach values in the MHz range. We identify design rules to simultaneously achieve high optical and mechanical quality factors along with strong optomechanical coupling.

© 2014 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Photonic Crystals

History
Original Manuscript: March 19, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: May 1, 2014
Published: May 14, 2014

Citation
Laura Kipfstuhl, Felix Guldner, Janine Riedrich-Möller, and Christoph Becher, "Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond," Opt. Express 22, 12410-12423 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  2. I. Favero, K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009). [CrossRef]
  3. M. Aspelmeyer, S. Gröblacher, K. Hammerer, N. Kiesel, “Quantum optomechanics—throwing a glance,” J. Opt. Soc. Am. B 27, A189–A197 (2010). [CrossRef]
  4. M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, “Cavity optomechanics,” ArXiv 1303.0733 (2013).
  5. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef] [PubMed]
  6. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]
  7. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys. 10, 095015 (2008). [CrossRef]
  8. C. Xiong, X. Sun, K. Y. Fong, H. X. Tang, “Integrated high frequency aluminum nitride optomechanical resonators,” Appl. Phys. Lett. 100, 171111 (2012). [CrossRef]
  9. Y. Liu, M. Davanço, V. Aksyuk, K. Srinivasan, “Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators,” Phys. Rev. Lett. 110, 223603 (2013). [CrossRef] [PubMed]
  10. E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nature Nanotech. 7, 509–515 (2012). [CrossRef]
  11. Y. Pennec, B. D. Rouhani, E. H. E. Boudouti, C. Li, Y. E. Hassouani, J. O. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, A. Martinez, “Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs,” Opt. Express 18, 14301–14310 (2010). [CrossRef] [PubMed]
  12. S. Mohammadi, A. A. Eftekhar, A. Khelif, A. Adibi, “Simultaneous two-dimensional phononic and photonic band gaps in optomechanical crystal slabs,” Opt. Express 18, 9164–9172 (2010). [CrossRef] [PubMed]
  13. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010). [CrossRef]
  14. M. Maldovan, E. L. Thomas, “Simultaneous localization of photons and phonons in two-dimensional periodic structures,” Appl. Phys. Lett. 88, 251907 (2006). [CrossRef]
  15. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett. 94, 051906 (2009). [CrossRef]
  16. T. Antoni, A. G. Kuhn, T. Briant, P.-F. Cohadon, A. Heidmann, R. Braive, A. Beveratos, I. Abram, L. L. Gratiet, I. Sagnes, I. Robert-Philip, “Deformable two-dimensional photonic crystal slab for cavity optomechanics,” Opt. Lett. 36, 3434–3436 (2011). [CrossRef] [PubMed]
  17. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011). [CrossRef] [PubMed]
  18. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B 81, 121101 (2010). [CrossRef]
  19. M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Opt. Express 20, 5204–5212 (2012). [CrossRef] [PubMed]
  20. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram-and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  21. M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, K. Srinivasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express 20, 24394–24410 (2012). [CrossRef] [PubMed]
  22. J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef] [PubMed]
  23. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012). [CrossRef] [PubMed]
  24. M. Davanço, S. Ates, Y. Liu, K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014). [CrossRef]
  25. L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Appl. Phys. Lett. 81, 4455–4457 (2002). [CrossRef]
  26. A. B. Hutchinson, P. A. Truitt, K. Schwab, L. Sekaric, J. Parpia, H. Craighead, J. Butler, “Dissipation in nanocrystalline-diamond nanomechanical resonators,” Appl. Phys. Lett. 84, 972–974 (2004). [CrossRef]
  27. P. Rath, S. Khasminskaya, C. Nebel, C. Wild, W. H. Pernice, “Diamond-integrated optomechanical circuits,” Nat. Commun. 4, 1690 (2013). [CrossRef] [PubMed]
  28. A. Gaidarzhy, M. Imboden, P. Mohanty, J. Rankin, B. W. Sheldon, “High quality factor gigahertz frequencies in nanomechanical diamond resonators,” Appl. Phys. Lett. 91, 203503 (2007). [CrossRef]
  29. Y. Tao, J. M. Boss, B. A. Moores, C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nature Commun.5(2014). [CrossRef]
  30. P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria, A. C. B. Jayich, “High quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett. 101, 163505 (2012). [CrossRef]
  31. M. J. Burek, D. Ramos, P. Patel, I. W. Frank, M. Lončar, “Nanomechanical resonant structures in single-crystal diamond,” Appl. Phys. Lett. 103, 131904 (2013). [CrossRef]
  32. M. K. Zalalutdinov, M. P. Ray, D. M. Photiadis, J. T. Robinson, J. W. Baldwin, J. E. Butler, T. I. Feygelson, B. B. Pate, B. H. Houston, “Ultrathin single crystal diamond nanomechanical dome resonators,” Nano Lett. 11, 4304–4308 (2011). [CrossRef] [PubMed]
  33. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, “One- and two-dimensional photonic crystal micro-cavities in single crystal diamond,” Nature Nanotech. 7, 69–74 (2012). [CrossRef]
  34. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef] [PubMed]
  35. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, M. Loncr, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013). [CrossRef] [PubMed]
  36. F. Jelezko, J. Wrachtrup, “Single defect centres in diamond: A review,” Phys. Stat. Sol. A 203, 3207–3225 (2006). [CrossRef]
  37. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. OBrien, “Quantum computers,” Nature 464, 45–53 (2010). [CrossRef] [PubMed]
  38. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011). [CrossRef]
  39. E. Neu, M. Agio, C. Becher, “Photophysics of single silicon vacancy centers in diamond: implications for single photon emission,” Opt. Express 20, 19956–19971 (2012). [CrossRef] [PubMed]
  40. M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V. Métillon, E. Neu, C. Hepp, C. Arend, C. Becher, K. Lauritsen, O. Benson, “Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution,” New J. Phys. 16, 023021 (2014). [CrossRef]
  41. T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmüller-Nethl, C. Becher, M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nature Commun. 5, 3328 (2014). [CrossRef]
  42. S. Pezzagna, D. Wildanger, P. Mazarov, A. D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S. W. Hell, J. Meijer, “Nanoscale engineering and optical addressing of single spins in diamond,” Small 6, 2117–2121 (2010). [CrossRef] [PubMed]
  43. M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire, J. Meijer, J.-F. Roch, “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” Phys. Stat. Sol. A 210, 2055–2059 (2013). [CrossRef]
  44. E. Neu, M. Fischer, S. Gsell, M. Schreck, C. Becher, “Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium,” Phys. Rev. B 84, 205211 (2011). [CrossRef]
  45. H. Sternschulte, K. Thonke, R. Sauer, P. C. Münzinger, P. Michler, “1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films,” Phys. Rev. B 50, 14554–14560 (1994). [CrossRef]
  46. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013). [CrossRef]
  47. I. Wilson-Rae, A. Imamoglu, “Quantum dot cavity-QED in the presence of strong electron-phonon interactions,” Phys. Rev. B 65, 235311 (2002). [CrossRef]
  48. K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin, P. Rabl, “Phonon cooling and lasing with nitrogen-vacancy centers in diamond,” Phys. Rev. B 88, 064105 (2013). [CrossRef]
  49. E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013). [CrossRef] [PubMed]
  50. S. Johnson, S. Fan, A. Mekis, J. Joannopoulos, “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett. 78, 3388–3390 (2001). [CrossRef]
  51. D. Englund, I. Fushman, J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). [CrossRef] [PubMed]
  52. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010). [CrossRef] [PubMed]
  53. Q. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  54. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  55. J. Riedrich-Möller, E. Neu, C. Becher, “Design of microcavities in diamond-based photonic crystals by fourier- and real-space analysis of cavity fields,” Photon. Nanostruc.: Fundam. Appl. 8, 150–162 (2010). [CrossRef]
  56. I. Aharonovich, A. D. Greentree, S. Prawer, “Diamond photonics,” Nature Photon. 5, 397–405 (2011). [CrossRef]
  57. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanicalcrystals,” Opt. Express 17, 20078–20098 (2009). [CrossRef] [PubMed]
  58. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012). [CrossRef]
  59. C. Zener, “Internal friction in solids. i. theory of internal friction in reeds,” Phys. Rev. 52, 230–235 (1937). [CrossRef]
  60. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, Y. Fink, “Perturbation theory for maxwells equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002). [CrossRef]
  61. L. S. Hounsome, R. Jones, M. J. Shaw, P. R. Briddon, “Photoelastic constants in diamond and silicon,” Phys. Stat. Sol. A 203, 3088–3093 (2006). [CrossRef]
  62. A. Lang, “The strain-optical constants of diamond: A brief history of measurements,” Diamond Relat. Mater. 18, 1–5 (2009). [CrossRef]
  63. Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Leveque, B. Djafari-Rouhani, “Acousto-optic couplings in two-dimensional phoxonic crystal cavities,” Appl. Phys. Lett. 101, 061109 (2012). [CrossRef]
  64. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009). [CrossRef] [PubMed]
  65. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87, 141105 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited