OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12452–12460

Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications

Elham Karami Keshmarzi, R. Niall Tait, and Pierre Berini  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12452-12460 (2014)
http://dx.doi.org/10.1364/OE.22.012452


View Full Text Article

Enhanced HTML    Acrobat PDF (2237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared amplified spontaneous emission (ASE) from an optically-pumped dye-doped polymeric slab waveguide, consisting of IR-140 in PMMA on a glass substrate, has been characterised. The ASE gain was measured using the variable stripe length method. Linewidth narrowing with increasing pump intensity was observed, indicating ASE gain in this material. The effects of the dye concentration and pump intensity on the gain were investigated under linear operation. The maximum achieved gain coefficient is γ ~68 cm−1 for a film with 0.8wt % of IR-140 to PMMA for a pump intensity of 43.4 mJ/cm2. The polarisation dependence of the ASE gain was also investigated by measuring the gain coefficient of orthogonal TE and TM modes and varying the pump polarisation relative to the amplifier length. It was observed that there is some degree of gain anisotropy when the pump polarisation is aligned perpendicular to the length, but that the gain was isotropic when the pump polarisation is aligned parallel the length. The applicability of IR-140 doped PMMA for active plasmonic applications is discussed.

© 2014 Optical Society of America

OCIS Codes
(250.4480) Optoelectronics : Optical amplifiers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: February 25, 2014
Revised Manuscript: May 6, 2014
Manuscript Accepted: May 6, 2014
Published: May 15, 2014

Citation
Elham Karami Keshmarzi, R. Niall Tait, and Pierre Berini, "Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications," Opt. Express 22, 12452-12460 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012). [CrossRef]
  2. V. G. Kozlov, V. Bulović, P. E. Burrows, S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]
  3. G. Somasundaram, A. Ramalingam, “Gain studies of Rhodamine 6G dye doped polymer laser,” J. Photochem. Photobiol. A 125(1-3), 93–98 (1999). [CrossRef]
  4. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, Ch. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010). [CrossRef]
  5. M. Karimi, N. Granpayeh, M. K. Morraveg Farshi, “Analysis and design of a dye-doped polymer optical fiber amplifier,” Appl. Phys. B 78(3-4), 387–396 (2004). [CrossRef]
  6. A. Costela, O. García, L. Cerdán, I. García-Moreno, R. Sastre, “Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides,” Opt. Express 16(10), 7023–7036 (2008). [CrossRef] [PubMed]
  7. J. Thompson, M. Anni, S. Lattante, D. Pisignano, R. I. R. Blyth, G. Gigli, R. Cingolani, “Amplified spontaneous emission in the near infraredfrom a dye-doped polymer thin film,” Synth. Met. 143(3), 305–307 (2004). [CrossRef]
  8. K. Yamashita, T. Kuro, K. Oe, H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye doped polymeric waveguide,” Appl. Phys. Lett. 88(24), 241110 (2006). [CrossRef]
  9. S. Yuyama, T. Nakajima, K. Yamashita, K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93(2), 023306 (2008). [CrossRef]
  10. E. K. Keshmarzi, R. N. Tait, P. Berini, “Long-range surface plasmon single-mode laser concepts,” J. Appl. Phys. 112(6), 063115 (2012). [CrossRef]
  11. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef] [PubMed]
  12. J. K. Kitur, V. A. Podolskiy, M. A. Noginov, “Stimulated Emission of Surface Plasmon Polaritons in a Microcylinder Cavity,” Phys. Rev. Lett. 106(18), 183903 (2011). [CrossRef] [PubMed]
  13. M. C. Gather, K. Meerholz, N. Danz, K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010). [CrossRef]
  14. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  15. J. K. Kitur, G. Zhu, Y. A. Barnakov, M. A. Noginov, “Stimulated emission of surface plasmon polaritons on smooth and corrugated silver surfaces,” J. Opt. 14(11), 114015 (2012). [CrossRef]
  16. S. Kéna-Cohen, P. N. Stavrinou, D. D. C. Bradley, S. A. Maier, “Confined Surface Plasmon-Polariton Amplifiers,” Nano Lett. 13(3), 1323–1329 (2013). [CrossRef] [PubMed]
  17. I. De Leon, P. Berini, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
  18. I. De Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010). [CrossRef]
  19. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229(1-6), 337–348 (2004). [CrossRef]
  20. I. De Leon, P. Berini, “Spontaneous emission in long-range surface plasmon-polariton amplifiers,” Phys. Rev. B 83(8), 081414 (2011). [CrossRef]
  21. G. Somasundaram, A. Ramalingam, “Gain studies of Coumarin 503 dye-doped polymer laser,” Opt. Lasers Eng. 33(2), 157–163 (2000). [CrossRef]
  22. K. C. Reyzer, L. W. Casperson, “Polarization characteristics of dye-laser amplifiers II. Isotropic molecular distributions,” J. Appl. Phys. 51(12), 6083 (1980). [CrossRef]
  23. B. Valeur, “Molecular Fluorescence, Principles and Applications,” Wiley-VCH, (2002).
  24. G. Mourou, M. M. Denariez-Roberge, “Polarization of Fluorescence and Bleaching of Dyes in a High-Viscosity Solvent,” IEEE. J. Quantum Electron. 9(8), 787–790 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited