OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12524–12532

Coherent perfect absorption and transparency in a nanostructured graphene film

Jianfa Zhang, Chucai Guo, Ken Liu, Zhihong Zhu, Weimin Ye, Xiaodong Yuan, and Shiqiao Qin  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12524-12532 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show numerically that both coherent perfect absorption and transparency can be realized in a monolayer graphene. The graphene film, doped and patterned with a periodical array of holes, can support plasmonic resonances in the Mid-infrared range. Under the illumination of two counter-propagating coherent optical beams, resonant optical absorption may be tuned continuously from 99.93% to less than 0.01% by controlling their relative phase which gives a modulation contrast of 40 dB (about 30 dB for transmission). The phenomenon provides a versatile platform for manipulating the interaction between light and graphene and may serve applications in optical modulators, transducers, sensors and coherent detectors.

© 2014 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: April 2, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: April 30, 2014
Published: May 15, 2014

Jianfa Zhang, Chucai Guo, Ken Liu, Zhihong Zhu, Weimin Ye, Xiaodong Yuan, and Shiqiao Qin, "Coherent perfect absorption and transparency in a nanostructured graphene film," Opt. Express 22, 12524-12532 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008). [CrossRef] [PubMed]
  2. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009). [CrossRef] [PubMed]
  3. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74 (2000). [CrossRef] [PubMed]
  4. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. SavelŁv, F. Nori, “Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008). [CrossRef]
  5. J. Zhang, J. Ou, K. MacDonald, N. Zheludev, “Optical response of plasmonic relief meta-surfaces,” Journal of Optics 14, 114002 (2012). [CrossRef]
  6. T. V. Teperik, F. G. De Abajo, A. Borisov, M. Abdelsalam, P. Bartlett, Y. Sugawara, J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008). [CrossRef]
  7. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef] [PubMed]
  9. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef] [PubMed]
  10. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Comm. 2, 517 (2011). [CrossRef]
  12. Y. Chong, L. Ge, H. Cao, A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010). [CrossRef] [PubMed]
  13. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Elect. Lett. 36, 321–322 (2000). [CrossRef]
  14. L. Ken, “Phase effect on guided resonance in photonic crystal slabs,” Chin. Phys. Lett. 22, 2294 (2005). [CrossRef]
  15. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011). [CrossRef] [PubMed]
  16. S. Longhi, “Coherent perfect absorption in a homogeneously broadened two-level medium,” Phys. Rev. A 83, 055804 (2011). [CrossRef]
  17. S. Dutta-Gupta, O. J. Martin, S. Dutta Gupta, G. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012). [CrossRef] [PubMed]
  18. S. Feng, K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012). [CrossRef]
  19. H. Noh, Y. Chong, A. D. Stone, H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012). [CrossRef] [PubMed]
  20. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, “Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination,” Opt. Express 20, 2246–2254 (2012). [CrossRef] [PubMed]
  21. J. Zhang, K. F. MacDonald, N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Sci. Appl. 1, e18 (2012); doi: [CrossRef]
  22. N. Gutman, A. A. Sukhorukov, Y. Chong, C. M. de Sterke, “Coherent perfect absorption and reflection in slow-light waveguides,” Opt. Lett. 38, 4970–4973 (2013). [CrossRef] [PubMed]
  23. R. Bruck, O. L. Muskens, “Plasmonic nanoantennas as integrated coherent perfect absorbers on soi waveguides for modulators and all-optical switches,” Opt. Express 21, 27652–27661 (2013). [CrossRef]
  24. S. A. Mousavi, E. Plum, J. Shi, N. I. Zheludev, “Coherent control of optical activity and optical anisotropy of thin metamaterials,” arXiv preprint arXiv:1312.0414 (2013).
  25. X. Fang, M. L. Tseng, J.-Y. Ou, K. F. MacDonald, D. P. Tsai, N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014). [CrossRef]
  26. F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010). [CrossRef]
  27. F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009). [CrossRef] [PubMed]
  28. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011). [CrossRef] [PubMed]
  29. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7, 330–334 (2012). [CrossRef] [PubMed]
  30. Z. Zhu, C. Guo, K. Liu, J. Zhang, W. Ye, X. Yuan, S. Qin, “Electrically tunable polarizer based on anisotropic absorption of graphene ribbons,” Appl. Phys. A 114, 1017–1021 (2014).
  31. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12, 2773–2777 (2012). [CrossRef] [PubMed]
  32. J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012). [CrossRef]
  33. J. Piper, S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1, 347353 (2014). [CrossRef]
  34. F. Liu, Y. Chong, S. Adam, M. Polini, “Gate-tunable coherent perfect absorption of terahertz radiation in graphene,” arXiv preprint arXiv:1402.2368 (2014).
  35. A. Grigorenko, M. Polini, K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  36. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, “A perfect absorber made of a graphene micro-ribbon meta-material,” Opt. Express 20, 28017–28024 (2012). [CrossRef] [PubMed]
  37. N. Papasimakis, S. Thongrattanasiri, N. I. Zheludev, F. G. de Abajo, “The magnetic response of graphene split-ring metamaterials,” Light: Sci. Appl. 2, e78 (2013); doi: [CrossRef]
  38. S. Thongrattanasiri, F. H. Koppens, F. J. G. de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012). [CrossRef] [PubMed]
  39. L. N. Hadley, D. Dennison, “Reflection and transmission interference filters,” J. Opt. Soc. Am. 37, 451–453 (1947). [CrossRef] [PubMed]
  40. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  41. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013). [CrossRef] [PubMed]
  42. L. Falkovsky, S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007). [CrossRef]
  43. L. Falkovsky, A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. Jour. B 56, 281–284 (2007). [CrossRef]
  44. G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” Jour. Appl. Phys. 104, 084314 (2008). [CrossRef]
  45. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  46. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  47. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited