OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12545–12550

Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing

Maciej Kowalczyk, Jakub Haberko, and Piotr Wasylczyk  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12545-12550 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple broadband gradient-index antireflective coating, fabricated directly on a single mode telecom fiber tip. A regular array of hemi-ellipsoidal protrusions significantly reduce the Fresnel reflection from the glass-air interface. The parameters of the structure were optimized with numerical simulation for the best performance at and around 1550 nm and the coating was fabricated with Direct Laser Writing. The measured reflectance decreased by a factor of 30 at 1550 nm and was below 0.28% for the 100 nm spectral band around the central wavelength. Compared to quarter wavelength antireflective coatings the demonstrated approach offers significantly reduced technological challenges, in particular processing of a single optical material with low sensitivity to imperfections in the fabrication process.

© 2014 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(220.4000) Optical design and fabrication : Microstructure fabrication
(310.1210) Thin films : Antireflection coatings
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6628) Thin films : Subwavelength structures, nanostructures
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Thin Films

Original Manuscript: April 8, 2014
Revised Manuscript: April 19, 2014
Manuscript Accepted: April 20, 2014
Published: May 15, 2014

Maciej Kowalczyk, Jakub Haberko, and Piotr Wasylczyk, "Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing," Opt. Express 22, 12545-12550 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2001), Chap. 15.
  2. J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. 11, 51–56 (1880).
  3. U. B. Schallenberg, “Nanostructures versus thin films in the design of antireflection coatings,” Proc. SPIE 8168, 81681N (2011).
  4. U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers,” Appl. Opt. 45(7), 1608–1618 (2006). [CrossRef] [PubMed]
  5. P. Lalanne, G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  6. H. L. Chen, S. Y. Chuang, C. H. Lin, Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007). [CrossRef] [PubMed]
  7. C.-H. Sun, P. Jiang, B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett. 92(6), 061112 (2008). [CrossRef]
  8. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. S. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  9. K. Hadobás, S. Kirsch, A. Carl, M. Acet, E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000). [CrossRef]
  10. Y. Kanamori, M. Okochi, K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express 21(1), 322–328 (2013). [CrossRef] [PubMed]
  11. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009). [CrossRef]
  12. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  13. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  14. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, “Toward perfect antireflection coatings: Numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002). [CrossRef] [PubMed]
  15. D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43(6), 1286–1295 (2004). [CrossRef] [PubMed]
  16. E. B. Grann, M. G. Varga, D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995). [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  18. M. S. Rill, Three-Dimensional Photonic Metamaterials by Direct Laser Writing and Advanced Metallization Techniques (Ph.D. Thesis, Karlsruhe School of Optics & Photonics, 2010), Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614 .
  19. H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Actuators A Phys. 83(1–3), 130–135 (2000). [CrossRef]
  20. K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol. 9(1–2), 5–10 (2002). [CrossRef]
  21. H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng. 53(1–4), 171–174 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited