OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12563–12572

Generation of multipartite continuous-variable entanglement via atomic spin wave: Heisenberg-Langevin approach

Xihua Yang, Jie Shang, Bolin Xue, Yuanyuan Zhou, and Min Xiao  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12563-12572 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We conduct theoretical studies on the effects of various parameters on generation of multipartite continuous-variable entanglement via atomic spin wave induced by the strong coupling and probe fields in the Λ-type electromagnetically induced transparency configuration in a realistic atomic ensemble by using the Heisenberg-Langevin formalism. It is shown that the increase of the atomic density and/or Rabi frequencies of the scattering fields, as well as the decrease of the coherence decay rate of the lower doublet would strengthen the degree of multipartite entanglement. This provides a clear evidence that the creation of multicolor multipartite entangled narrow-band fields to any desired number with a long correlation time can be achieved conveniently by using atomic spin wave in an atomic ensemble with large optical depth, which may find interesting applications in quantum information processing and quantum networks.

© 2014 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing
(060.5565) Fiber optics and optical communications : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: January 29, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: May 1, 2014
Published: May 16, 2014

Xihua Yang, Jie Shang, Bolin Xue, Yuanyuan Zhou, and Min Xiao, "Generation of multipartite continuous-variable entanglement via atomic spin wave: Heisenberg-Langevin approach," Opt. Express 22, 12563-12572 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bouweester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  3. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  5. T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, P. van Loock, “Experimental Creation of a Fully Inseparable Tripartite Continuous-Variable State,” Phys. Rev. Lett. 91(8), 080404 (2003). [CrossRef] [PubMed]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  7. C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003). [CrossRef] [PubMed]
  8. V. Boyer, A. M. Marino, R. C. Pooser, P. D. Lett, “Entangled Images from Four-Wave Mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  9. H. Wu, M. Xiao, “Bright correlated twin beams from an atomic ensemble in the optical cavity,” Phys. Rev. A 80(6), 063415 (2009). [CrossRef]
  10. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003). [CrossRef] [PubMed]
  11. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, S. E. Harris, “Generation of Paired Photons with Controllable Waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005). [CrossRef] [PubMed]
  12. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  13. M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995). [CrossRef] [PubMed]
  14. M. Fleischhauer, A. Imamoglu, J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005). [CrossRef]
  15. E. Arimondo, “V Coherent Population Trapping in Laser Spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  16. P. Kolchin, “Electromagnetically-induced-transparency-based paired photon generation,” Phys. Rev. A 75(3), 033814 (2007). [CrossRef]
  17. Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010). [CrossRef]
  18. F. Le Kien, A. Patnaik, K. Hakuta, “Multiorder coherent Raman scattering of a quantum probe field,” Phys. Rev. A 68(6), 063803 (2003). [CrossRef]
  19. X. H. Yang, Y. Y. Zhou, M. Xiao, “Generation of multipartite continuous- variable entanglement via atomic spin wave,” Phys. Rev. A 85(5), 052307 (2012). [CrossRef]
  20. X. H. Yang, Y. Y. Zhou, M. Xiao, “Entangler via electromagnetically induced transparency with an atomic ensemble,” Sci. Rep. 3, 3479–3483 (2013). [PubMed]
  21. X. H. Yang, J. T. Sheng, U. Khadka, M. Xiao, “Generation of correlated and anticorrelated multiple fields via atomic spin coherence,” Phys. Rev. A 85(1), 013824 (2012). [CrossRef]
  22. V. Wong, R. S. Bennink, A. M. Marino, R. W. Boyd, C. R. Stroud, F. Narducci, “Influence of coherent Raman scattering on coherent population trapping in atomic sodium vapor,” Phys. Rev. A 70(5), 053811 (2004). [CrossRef]
  23. K. I. Harada, T. Kanbashi, M. Mitsunaga, K. Motomura, “Competition between electromagnetically induced transparency and stimulated Raman scattering,” Phys. Rev. A 73(1), 013807 (2006). [CrossRef]
  24. G. S. Agarwal, T. N. Dey, D. J. Gauthier, “Competition between electromagnetically induced transparency and Raman processes,” Phys. Rev. A 74(4), 043805 (2006). [CrossRef]
  25. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double- Lambda System,” Phys. Rev. Lett. 84(23), 5308–5311 (2000). [CrossRef] [PubMed]
  26. M. Fleischhauer, T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51(3), 2430–2442 (1995). [CrossRef] [PubMed]
  27. L. M. Duan, G. Giedke, J. I. Cirac, P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000). [CrossRef] [PubMed]
  28. C. F. McCormick, V. Boyer, E. Arimondo, P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Opt. Lett. 32(2), 178–180 (2007). [CrossRef] [PubMed]
  29. C. F. McCormick, A. M. Marino, V. Boyer, P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]
  30. R. Zhang, S. R. Garner, L. V. Hau, “Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates,” Phys. Rev. Lett. 103(23), 233602 (2009). [CrossRef] [PubMed]
  31. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, I. Bloch, “Electromagnetically Induced Transparency and Light Storage in an Atomic Mott Insulator,” Phys. Rev. Lett. 103(3), 033003 (2009). [CrossRef] [PubMed]
  32. P. van Loock, S. L. Braunstein, “Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network,” Phys. Rev. Lett. 84(15), 3482–3485 (2000).
  33. P. van Loock, A. Furusawa, “Detecting genuine multipartite continuous- variable entanglement,” Phys. Rev. A 67(5), 052315 (2003). [CrossRef]
  34. M. K. Olsen, A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74(6), 063809 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited