OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12573–12582

Junction-less phototransistor with nanowire channels, a modeling study

Anita Fadavi Roudsari, Simarjeet S. Saini, Nixon O, and M. P. Anantram  »View Author Affiliations


Optics Express, Vol. 22, Issue 10, pp. 12573-12582 (2014)
http://dx.doi.org/10.1364/OE.22.012573


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new nanowire based, junction-less phototransistor, that consists of a channel with both wide and narrow regions to ensure efficient light absorption and low dark current, respectively. While the light is absorbed in the wide region, the narrow region allows for ease of band engineering. We also find that a nanowire in the source can further boost the optical gain. The proposed device, which can potentially detect very low light intensities, does not rely on complicated doping profiles, but instead uses suitably designed gates. Our calculations show the detection of a photon flux as low as 35 per second.

© 2014 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(040.6040) Detectors : Silicon
(040.6070) Detectors : Solid state detectors
(230.5160) Optical devices : Photodetectors
(250.0040) Optoelectronics : Detectors

ToC Category:
Optoelectronics

History
Original Manuscript: February 25, 2014
Revised Manuscript: May 4, 2014
Manuscript Accepted: May 5, 2014
Published: May 16, 2014

Citation
Anita Fadavi Roudsari, Simarjeet S. Saini, Nixon O, and M. P. Anantram, "Junction-less phototransistor with nanowire channels, a modeling study," Opt. Express 22, 12573-12582 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-10-12573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Shiri, Y. Kong, A. Buin, M. P. Anantram, “Strain Induced Change of Bandgap and Effective Mass in Silicon Nanowires,” Appl. Phys. Lett. 93(7), 073114 (2008). [CrossRef]
  2. A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, Y. H. Lo, “Silicon Nanowire Detectors Showing Phototransistive Gain,” Appl. Phys. Lett. 93(12), 121110 (2008). [CrossRef] [PubMed]
  3. R. Agarwal, C. M. Lieber, “Semiconductor Nanowires: Optics and Optoelectronics,” Appl. Phys., A Mater. Sci. Process. 85(3), 209–215 (2006). [CrossRef]
  4. J. H. Park, S. H. Seo, I. S. Wang, H. J. Yoon, J. K. Shin, P. Choi, Y. C. Jo, H. Kim, “Active Pixel Sensor Using a 1x16 Nano-Wire Photodetector Array for Complementary Metal Oxide Semiconductor Imagers,” Jpn. J. Appl. Phys. 43(4B), 2050–2053 (2004). [CrossRef]
  5. H. G. Choi, Y. S. Choi, Y. C. Jo, H. Kim, “A Low-Power Silicon-on-Insulator Photodetector with a Nanometer-Scale Wire for Highly Integrated Circuit,” Jpn. J. Appl. Phys. 43(6B), 3916–3918 (2004). [CrossRef]
  6. A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, “Junctionless nanowire transistor (JNT): Properties and design guidelines,” in Proceedings of the European Solid-State Device Research Conference (Sevilla, 2010), 357 −360. [CrossRef]
  7. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, “Photoconduction Studies on GaN Nanowire Transistors under UV and Polarized UV Illumination,” Chem. Phys. Lett. 389(1-3), 176–180 (2004). [CrossRef]
  8. K. H. Kim, K. Keem, D. Y. Jeong, B. Min, K. Cho, H. Kim, B. M. Moon, T. Noh, J. Park, M. Suh, S. Kim, “Photocurrent of Undoped, n- and p-Type Si Nanowires Synthesized by Thermal Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45(5A5R), 4265–4269 (2006). [CrossRef]
  9. W. Kim, K. S. Chu, “ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity,” Phys. Status Solidi., A Appl. Mater. Sci. 206(1), 179–182 (2009). [CrossRef]
  10. E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, “Transparent Zinc Oxide Gate Metal - Oxide - Semiconductor Field-Effect Transistor for High-Responsivity Photodetector,” IEEE Electron Device Lett. 30(5), 493–495 (2009). [CrossRef]
  11. A. Zhang, C. Soci, B. Xiang, J. Park, D. Wang, Y. H. Lo, “High Gain ZnO Nanowire Phototransistor,” in Conference on Lasers and Electro-Optics (Baltimore2007), 1–2.
  12. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011). [CrossRef]
  13. Y. H. Ahn, J. Park, “Efficient visible light detection using individual germanium nanowire field effect transistors,” Appl. Phys. Lett. 91(16), 162102 (2007). [CrossRef]
  14. K.-S. Shin, A. Pan, C. O. Chui, “Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors,” Appl. Phys. Lett. 100(12), 123504 (2012). [CrossRef]
  15. H. Yamamoto, K. Taniguchi, C. Hamaguchi, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1382–1386 (1996). [CrossRef]
  16. Y. Nakamura, H. Ohzu, M. Miyawaki, N. Tanaka, T. Ohmi, “Design of Bipolar Imaging Device (BASIS),” IEEE Trans. Electron. Dev. 38(5), 1028–1036 (1991). [CrossRef]
  17. Atlas, Silvaco., www.silvaco.com
  18. R. F. Pierret, Semiconductor Device Fundamentals, (Pearson Education, 1996), Chap. 10, 11.
  19. A. Fadavi-Roudsari, S. S. Saini, N. O, M. P. Anantram, “High-Gain, Multiple-Gate Photodetector with Nanowires in the Channel,” IEEE Electron Device Lett. 32(3), 357–359 (2011). [CrossRef]
  20. The results are obtained by solving the classic Poisson’s and carrier continuity equations using Atlas simulator [17]. Room temperature dark currents are obtained by running simulations at higher temperatures, and then estimating the current at room temperature. Electron and hole lifetimes are assumed to be 10-5s
  21. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012). [CrossRef]
  22. O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile, N. Magnea, “Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method,” Nano Lett. 10(7), 2323–2329 (2010). [CrossRef] [PubMed]
  23. R. Coustel, Q. Benoît à la Guillaume, V. Calvo, O. Renault, L. Dubois, F. Duclairoir, N. Pauc, “Measurement of the Surface Recombination Velocity in Organically Functionalized Silicon Nanostructures: The Case of Silicon on Insulator,” J. Phys. Chem. C 115(45), 22265–22270 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited