OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 10 — May. 19, 2014
  • pp: 12678–12690

Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption

Michaël Lobet, Mercy Lard, Michaël Sarrazin, Olivier Deparis, and Luc Henrard  »View Author Affiliations

Optics Express, Vol. 22, Issue 10, pp. 12678-12690 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pyramidal metamaterials are currently developed for ultra-broadband absorbers. They consist of periodic arrays of alternating metal/dielectric layers forming truncated square-based pyramids. The metallic layers of increasing lengths play the role of vertically and, to a less extent, laterally coupled plasmonic resonators. Based on detailed numerical simulations, we demonstrate that plasmon hybridization between such resonators helps in achieving ultra-broadband absorption. The dipolar modes of individual resonators are shown to be prominent in the electromagnetic coupling mechanism. Lateral coupling between adjacent pyramids and vertical coupling between alternating layers are proven to be key parameters for tuning of plasmon hybridization. Following optimization, the operational bandwidth of Au/Ge pyramids, i.e. the bandwidth within which absorption is higher than 90%, extends over a 0.2-5.8 µm wavelength range, i.e. from UV-visible to mid-infrared, and total absorption (integrated over the operational bandwidth) amounts to 98.0%. The omni-directional and polarization-independent high-absorption properties of the device are verified. Moreover, we show that the choice of the dielectric layer material (Si versus Ge) is not critical for achieving ultra-broadband characteristics, which confers versatility for both design and fabrication. Realistic fabrication scenarios are briefly discussed. This plasmon hybridization route could be useful in developing photothermal devices, thermal emitters or shielding devices that dissimulate objects from near infrared detectors.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: January 23, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 28, 2014
Published: May 16, 2014

Michaël Lobet, Mercy Lard, Michaël Sarrazin, Olivier Deparis, and Luc Henrard, "Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption," Opt. Express 22, 12678-12690 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  5. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]
  6. O. Hayden, R. Agarwal, C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5(5), 352–356 (2006). [CrossRef] [PubMed]
  7. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011). [CrossRef] [PubMed]
  8. M. K. Hedayati, F. Faupel, M. Elbahri, “Tunable broadband plasmonic perfect absorber at visible frequency,” Appl. Phys., A Mater. Sci. Process. 109(4), 769–773 (2012). [CrossRef]
  9. Y. Cui, K. H. Fung, J. Xu, J. Yi, S. He, N. X. Fang, “Exciting multiple plasmonic resonances by a double-layered metallic nanostructure,” J. Opt. Soc. Am. B 28(11), 2827–2832 (2011). [CrossRef]
  10. Y. Cui, K. H. Fung, J. Xu, S. He, N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012). [CrossRef] [PubMed]
  11. P. Zhu, L. J. Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012). [CrossRef]
  12. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012). [CrossRef] [PubMed]
  13. Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
  14. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  15. F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012). [CrossRef]
  16. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, A. Alu, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013). [CrossRef]
  17. L. Qiuqun, Y. Weixing, Z. Wencai, W. Taisheng, Z. Jingli, Z. Hongsheng, T. Shaohua, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3, 1187–1196 (2013).
  18. P. Clapham, M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244(5414), 281–282 (1973). [CrossRef]
  19. O. Deparis, J. P. Vigneron, O. Agustsson, D. Decroupet, “Optimization of photonics for corrugated thin-films solar cells,” J. Appl. Phys. 106, 094505 (2009).
  20. D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006). [CrossRef] [PubMed]
  21. Y. Danlée, I. Huynen, C. Bailly, “Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes,” Appl. Phys. Lett. 100(21), 213105 (2012). [CrossRef]
  22. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  23. R. F. Potter, “Germanium (Ge),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
  24. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985).
  25. M. Lobet, O. Deparis, “Plasmonic device using backscattering of light for enhanced gas and vapour sensing,” Proc. SPIE 8425, 842509 (2012). [CrossRef]
  26. M. Moharam, T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  27. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994). [CrossRef]
  28. J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010). [CrossRef] [PubMed]
  29. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  30. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006). [CrossRef]
  31. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007). [CrossRef]
  32. M. Pu, Q. Feng, C. Hu, X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7(4), 733–738 (2012). [CrossRef]
  33. E. Popov, S. Enoch, N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited