OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A13–A20

Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se2 thin film solar cells

Yi-Chih Wang, Bing-Yi Lin, Po-Tsun Liu, and Han-Ping D. Shieh  »View Author Affiliations

Optics Express, Vol. 22, Issue S1, pp. A13-A20 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A solution-grown subwavelength antireflection coating has been investigated for enhancing the photovoltaic efficiency of thin film solar cells. The 100-nm-height ZnO nanorods coating benefited the photocurrent of Cu(In,Ga)Se2 solar cells from 31.7 to 34.5 mA/cm2 via the decrease of surface light reflectance from 14.5% to 7.0%, contributed by the gradual refractive index profile between air and AZO window layer. The further reduction of surface reflectance to 2.3% in the case of 540-nm-height nanorods, yet, lowered the photocurrent to 29.5 mA/cm2, attributed to the decrease in transmittance. The absorption effect of hydrothermal grown ZnO nanorods was explored to optimize the antireflection function in enhancing photovoltaic performances.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: September 16, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: October 25, 2013
Published: November 12, 2013

Yi-Chih Wang, Bing-Yi Lin, Po-Tsun Liu, and Han-Ping D. Shieh, "Photovoltaic electrical properties of aqueous grown ZnO antireflective nanostructure on Cu(In,Ga)Se2 thin film solar cells," Opt. Express 22, A13-A20 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. K. Liao, S. Y. Kuo, W. T. Lin, F. I. Lai, D. H. Hsieh, M. A. Tsai, S. C. Chen, D. W. Chiou, J. C. Chang, K. H. Wu, S. J. Cheng, and H.-C. Kuo, “Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells,” Opt. Express 20(S6), A836–A842 (2012). [CrossRef]
  2. X. H. Tan, S. L. Ye, and X. Liu, “Increasing surface band gap of Cu(In,Ga)Se2 thin films by post depositing an In-Ga-Se thin layer,” Opt. Express 19(7), 6609–6615 (2011). [CrossRef] [PubMed]
  3. Y. C. Wang and H. P. Shieh, “Improvement of bandgap homogeneity in Cu(In,Ga)Se2 thin films using a modified two-step selenization process,” Appl. Phys. Lett. 103(15), 153502 (2013). [CrossRef]
  4. R. Caballero, C. Guillén, M. Gutiérrez, and C. A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization of sequentially evaporated metallic layers,” Prog. Photovolt. Res. Appl. 14(2), 145–153 (2006). [CrossRef]
  5. V. Gremenok, E. Zaretskaya, V. Zalesski, K. Bente, W. Schmitz, R. Martin, and H. Moller, “Preparation of Cu(In,Ga)Se2 thin film solar cells by two-stage selenization processes using N2 gas,” Sol. Energy Mater. Sol. Cells 89(2–3), 129–137 (2005). [CrossRef]
  6. C. H. Huang, H. L. Cheng, W. E. Chang, and M. S. Wong, “Comprehensive characterization of DC sputtered AZO films for CIGS photovoltaics,” J. Electrochem. Soc. 158(5), H510–H515 (2011). [CrossRef]
  7. M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, and H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013). [CrossRef] [PubMed]
  8. B. K. Shin, T. I. Lee, J. Xiong, C. Hwang, G. Noh, J. H. Cho, and J. M. Myoung, “Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells,” Sol. Energy Mater. Sol. Cells 95(9), 2650–2654 (2011). [CrossRef]
  9. L. Aé, D. Kieven, J. Chen, R. Klenk, T. Rissom, Y. Tang, and M. C. Lux-Steiner, “ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,” Prog. Photovolt. Res. Appl. 18(3), 209–213 (2010). [CrossRef]
  10. S. Y. Kuo, M. Y. Hsieh, F. I. Lai, Y. K. Liao, M. H. Kao, and H. C. Kuo, “Modeling and optimization of sub-wavelength grating nanostructures on Cu(In,Ga)Se2 solar cell,” Jpn. J. Appl. Phys. 51, 10NC14 (2012). [CrossRef]
  11. S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Res. Lett. 7(1), 29 (2012). [CrossRef] [PubMed]
  12. Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Express 21(6), 7240–7249 (2013). [CrossRef] [PubMed]
  13. I. H. Choi, “Raman spectroscopy of CuIn1 − xGaxSe2 for in-situ monitoring of the composition ratio,” Thin Solid Films 519(13), 4390–4393 (2011). [CrossRef]
  14. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007). [CrossRef]
  15. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorods arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010). [CrossRef]
  16. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993). [CrossRef] [PubMed]
  17. B. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am. 65(3), 267–270 (1975). [CrossRef]
  18. H. Wahab, A. Salama, A. El-Saeid, O. Nur, M. Willander, and I. Battisha, “Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique,” Result Phys. 3, 46–51 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited