OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A376–A385

High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices

Wenyan Wang, Yuying Hao, Yanxia Cui, Ximin Tian, Ye Zhang, Hua Wang, Fang Shi, Bin Wei, and Wei Huang  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A376-A385 (2014)
http://dx.doi.org/10.1364/OE.22.00A376


View Full Text Article

Enhanced HTML    Acrobat PDF (1796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal nanogratings as one of the promising architectures for effective light trapping in organic photovoltaics (OPVs) have been actively studied over the past decade. Here we designed a novel metal nanowall grating with ultra-small period and ultra-high aspect-ratio as the back electrode of the OPV device. Such grating results in the strong hot spot effect in-between the neighboring nanowalls and the localized surface plasmon effect at the corners of nanowalls. These combined effects make the integrated absorption efficiency of light over the wavelength range from 400 to 650 nm in the active layer for the proposed structure, with respect to the equivalent planar structure, increases by 102% at TM polarization and by 36.5% at the TM/TE hybrid polarization, respectively. Moreover, it is noted that the hot spot effect in the proposed structure is more effective for ultra-thin active layers, which is very favorable for the exciton dissociation and charge collection. Therefore such a nanowall grating is expected to improve the overall performance of OPV devices.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: September 30, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: February 3, 2014
Published: February 18, 2014

Citation
Wenyan Wang, Yuying Hao, Yanxia Cui, Ximin Tian, Ye Zhang, Hua Wang, Fang Shi, Bin Wei, and Wei Huang, "High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices," Opt. Express 22, A376-A385 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012). [CrossRef]
  2. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–597 (2012). [CrossRef]
  3. J. R. Tumbleston, D. H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express17(9), 7670–7681 (2009). [CrossRef] [PubMed]
  4. X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Perot cavity modes,” Org. Electron.14(6), 1577–1585 (2013). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-enhanced organic photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater.25(17), 2385–2396 (2013). [CrossRef] [PubMed]
  7. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett.10(4), 1501–1505 (2010). [CrossRef] [PubMed]
  8. D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl.50(24), 5519–5523 (2011). [CrossRef] [PubMed]
  9. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24(22), 3046–3052 (2012). [CrossRef] [PubMed]
  10. K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett.91(11), 113514 (2007). [CrossRef]
  11. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  12. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater.22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  13. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  14. I. Kim, D. S. Jeong, T. S. Lee, W. S. Lee, and K.-S. Lee, “Plasmonic nanograting design for inverted polymer solar cells,” Opt. Express20(S5Suppl 5), A729–A739 (2012). [CrossRef] [PubMed]
  15. Z. Sun and X. Zuo, “Tunable absorption of light via localized plasmon resonances on a metal surface with interspaced ultra-thin metal gratings,” Plasmonics6(1), 83–89 (2011). [CrossRef]
  16. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011). [CrossRef] [PubMed]
  17. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett.98(9), 093117 (2011). [CrossRef]
  18. W. E. I. Sha, W. C. H. Choy, and W. Cho Chew, “The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells,” Appl. Phys. Lett.101(22), 223302 (2012). [CrossRef]
  19. Y. Liu and J. Kim, “Polarization-diverse broadband absorption enhancement in thin-film photovoltaic devices using long-pitch metallic gratings,” J. Opt. Soc. Am. B28(8), 1934–1939 (2011). [CrossRef]
  20. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012). [CrossRef]
  21. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  22. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express21(4), 4055–4060 (2013). [CrossRef] [PubMed]
  23. Z. Ye, S. Chaudhary, P. Kuang, and K.-M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express20(11), 12213–12221 (2012). [CrossRef] [PubMed]
  24. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater.23(21), 2469–2473 (2011). [CrossRef] [PubMed]
  25. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8(12), 655–663 (2001). [CrossRef] [PubMed]
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  27. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc.130(38), 12616–12617 (2008). [CrossRef] [PubMed]
  28. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011). [CrossRef] [PubMed]
  29. E. D. Palik, Handbook of Optical Constants of Solids: Index (Access Online via Elsevier, 1998).
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3(11), 1780–1787 (1986). [CrossRef]
  31. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited