OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A402–A415

Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation

Asa Asadollahbaik, Stuart A. Boden, Martin D. B. Charlton, David N. R. Payne, Simon Cox, and Darren M. Bagnall  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A402-A415 (2014)
http://dx.doi.org/10.1364/OE.22.00A402


View Full Text Article

Enhanced HTML    Acrobat PDF (3621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a study of the optical properties of silicon moth-eye structures using a custom-made fully automated broadband spectroscopic reflectometry system (goniometer). This measurement system is able to measure specular reflectance as a function of wavelength, polar incidence angle and azimuth orientation angle, from normal to near-parallel polar incidence angle. The system uses a linear polarized broadband super-continuum laser light source. It is shown that a moth-eye structure composed of a regular array of protruding silicon rods, with finite sidewall angle reduces reflectance and sensitivity to incident wavelength in comparison to truly cylindrical rods with perpendicular sidewalls. It is also shown that moth-eye structures have omnidirectional reflectance properties in response to azimuth orientation of the sample. The importance of applying the reflectometer setup to study the optical properties of solar cell antireflective structures is highlighted.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(120.5700) Instrumentation, measurement, and metrology : Reflection
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Subwavelength Structures, nanostructures

History
Original Manuscript: December 11, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 9, 2014
Published: February 18, 2014

Citation
Asa Asadollahbaik, Stuart A. Boden, Martin D. B. Charlton, David N. R. Payne, Simon Cox, and Darren M. Bagnall, "Reflectance properties of silicon moth-eyes in response to variations in angle of incidence, polarisation and azimuth orientation," Opt. Express 22, A402-A415 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Bagnall and S. A. Boden, Energy Harvesting for Autonomous Systems (Artech House, 2010).
  2. S. Boden, “Biomimetic nanostructured surfaces for antireflection in photovoltaics,” Ph.D. thesis, University of Southampton (2009).
  3. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black multi-crystalline silicon solar cells,” Phys. Status Solidi Rapid Res. Lett.1, R53–R55 (2007). [CrossRef]
  4. D. King and M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” in Proc. 22nd IEEE Photovolt. Spec. Conf., Las Vegas, Nevada (1991).
  5. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun.172, 139–151 (1999). [CrossRef]
  6. M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovoltaics Res. Appl.14(3), 225–235 (2006). [CrossRef]
  7. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron Dev.38, 1925–1934 (1991). [CrossRef]
  8. U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells,” Appl. Surf. Sci.230, 364–370 (2004). [CrossRef]
  9. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett.66, 3636–3638 (1995). [CrossRef]
  10. R. Kishore, S. Singh, and B. Das, “PECVD grown silicon nitride AR coatings on polycrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells26, 27–35 (1992). [CrossRef]
  11. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett.73, 1991–1993 (1998). [CrossRef]
  12. I. Parm, K. Kim, D. Lim, J. Lee, J. Heo, J. Kim, D. Kim, S. Lee, and J. Yi, “High-density inductively coupled plasma chemical vapor deposition of silicon nitride for solar cell application,” Sol. Energy Mater. Sol. Cells74, 97–105 (2002). [CrossRef]
  13. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics Res. Appl.21, 827–837 (2013). [CrossRef]
  14. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  15. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci.13, 525–526 (1996). [CrossRef]
  16. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of a hawkmoth, cephonodes hylas,” Zool. Sci.14, 737–741 (1997). [CrossRef]
  17. W. L. Min, A. P. Betancourt, P. Jiang, and B. Jiang, “Bioinspired broadband antireflection coatings on GaSb,” Appl. Phys. Lett.92, 141109 (2008). [CrossRef]
  18. S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt.29, 993–1009 (1982).
  19. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8, 53–57 (1997). [CrossRef]
  20. K.-S. Han, J.-H. Shin, and H. Lee, “Enhanced transmittance of glass plates for solar cells using nano-imprint lithography,” Sol. Energy Mater. Sol. Cells94, 583–587 (2010). [CrossRef]
  21. K.-S. Han, J.-H. Shin, K.-I. Kim, and H. Lee, “Nanosized structural anti-reflection layer for thin film solar cells,” Jpn. J. Appl. Phys.50, 020207 (2011).
  22. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett.88, 203107 (2006). [CrossRef]
  23. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics Res. Appl.18, 195–203 (2010). [CrossRef]
  24. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93, 133108 (2008). [CrossRef]
  25. S. A. Boden and D. M. Bagnall, “Nanostructured biomimetic moth-eye arrays in silicon by nanoimprint lithography,” Proc. SPIE7401, 74010J (2009). [CrossRef]
  26. A. Parretta, A. Sarno, and H. Yakubu, “Non-destructive optical characterization of photovoltaic modules by integrating sphere, Part I: Mono-Si modules,” Opt. Commun.161, 297–309 (1999). [CrossRef]
  27. P. Maddalena, A. Parretta, A. Sarno, and P. Tortora, “Novel techniques for the optical characterization of photovoltaic materials and devices,” Opt. Lasers Eng.39, 165–177 (2003). [CrossRef]
  28. M. F. A. Muttalib, S. Z. Oo, and M. D. B. Charlton, “Experimental measurement of photonic/plasmonic crystal dispersion, applied to the investigation of surface plasmon dispersion for sers sensing applications,” Proc. SPIE8264, 82641C (2012). [CrossRef]
  29. E. Hecht, Optics (Addison Wesley, 2002).
  30. R. E. Bird and C. Riordan, “Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres,” J. Clim. Appl. Meteorol.25, 87–97 (1986). [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Sunrise to sunset optimization of thin film antireflective coatings for encapsulated planar silicon solar cells,” Prog. Photovoltaics Res. Appl.17, 241–252 (2009). [CrossRef]
  32. S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the brewster angle,” Nanoscale2, 799–805 (2010). [CrossRef] [PubMed]
  33. C. Gourgon, C. Perret, J. Tallal, F. Lazzarino, S. Landis, O. Joubert, and R. Pelzer, “Uniformity across 200mm silicon wafers printed by nanoimprint lithography,” J. Phys. D Appl. Phys.38, 70 (2005). [CrossRef]
  34. J. Lee, S. Park, K. Choi, and G. Kim, “Nano-scale patterning using the roll typed uv-nanoimprint lithography tool,” Microelectron. Eng.85, 861–865 (2008). [CrossRef]
  35. C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng.18, 075001 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited