OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A491–A497

Influence of carrier localization on high-carrier-density effects in AlGaN quantum wells

Jūras Mickevičius, Jonas Jurkevičius, Gintautas Tamulaitis, Michael S. Shur, Max Shatalov, Jinwei Yang, and Remis Gaska  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A491-A497 (2014)
http://dx.doi.org/10.1364/OE.22.00A491


View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of carrier localization on photoluminescence efficiency droop and stimulated emission is studied in AlGaN multiple quantum wells with different strength of carrier localization. We observe that carrier delocalization at low temperatures predominantly enhances the nonradiative recombination and causes the droop, while the main effect of the delocalization at elevated temperatures is enhancement of PL efficiency due to increasing contribution of bimolecular recombination of free carriers. When the carrier thermal energy exceeds the dispersion of the potential fluctuations causing the carrier localization, the droop is caused by stimulated carrier recombination.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Materials

History
Original Manuscript: December 12, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: January 20, 2014
Published: February 27, 2014

Citation
Jūras Mickevičius, Jonas Jurkevičius, Gintautas Tamulaitis, Michael S. Shur, Max Shatalov, Jinwei Yang, and Remis Gaska, "Influence of carrier localization on high-carrier-density effects in AlGaN quantum wells," Opt. Express 22, A491-A497 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett.69(27), 4188–4190 (1996). [CrossRef]
  2. C. J. Collins, A. V. Sampath, G. A. Garett, W. L. Sarney, H. Shen, M. Wraback, A. Yu. Nikiforov, G. S. Cargill, and V. Dierolf, “Enhanced room-temperature luminescence efficiency through carrier localization in AlxGa1-xN alloys,” Appl. Phys. Lett.86(3), 031916 (2005). [CrossRef]
  3. S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, T. J. Badcock, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, “The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures,” J. Appl. Phys.111(8), 083512 (2012). [CrossRef]
  4. N. I. Bochkareva, Y. T. Rebane, and Y. G. Shreter, “Efficiency droop and incomplete carrier localization in InGaN/GaN quantum well light-emitting diodes,” Appl. Phys. Lett.103(19), 191101 (2013). [CrossRef]
  5. J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, “Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization,” Appl. Phys. Lett.97(20), 201112 (2010). [CrossRef]
  6. Y. Lin, Y. Zhang, Z. Liu, L. Su, J. Zhang, T. Wei, and Z. Chen, “Spatially resolved study of quantum efficiency droop in InGaN light-emitting diodes,” Appl. Phys. Lett.101(25), 252103 (2012). [CrossRef]
  7. J. Mickevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Correlation between carrier localization and efficiency droop in AlGaN epilayers,” Appl. Phys. Lett.103(1), 011906 (2013). [CrossRef]
  8. J. Mickevičius, J. Jurkevičius, K. Kazlauskas, A. Žukauskas, G. Tamulaitis, M. S. Shur, M. Shatalov, J. Yang, and R. Gaska, “Stimulated emission in AlGaN/AlGaN quantum wells with different Al content,” Appl. Phys. Lett.100(8), 081902 (2012). [CrossRef]
  9. J. Mickevičius, J. Jurkevičius, K. Kazlauskas, A. Žukauskas, G. Tamulaitis, M. S. Shur, M. Shatalov, J. Yang, and R. Gaska, “Stimulated emission due to localized and delocalized carriers in Al0.35Ga0.65N/Al0.49Ga0.51N quantum wells,” Appl. Phys. Lett.101(4), 041912 (2012). [CrossRef]
  10. J. Holst, A. Kaschner, U. Gfug, A. Hoffmann, C. Thomsen, F. Bertram, T. Riemann, D. Rudloff, P. Fischer, J. Christen, R. Averbeck, H. Riechert, M. Heuken, M. Schwambera, and O. Schon, “Comparison of the mechanism of optical amplification in InGaN/GaN heterostructures grown by molecular beam epitaxy and MOCVD,” Phys. Status Solidi A180, 327–332 (2000). [CrossRef]
  11. M. Strassburg, A. Hoffmann, J. Holst, J. Christen, T. Riemann, F. Bertram, and P. Fischer, “The origin of the PL photoluminescence Stokes shift in ternary group-III nitrides: field effects and localization,” Phys. Status Solidi C0(6), 1835–1845 (2003). [CrossRef]
  12. E. F. Pecora, W. Zhang, A. Yu. Nikiforov, L. Zhou, D. J. Smith, J. Yin, R. Paiella, L. D. Negro, and T. D. Moustakas, “Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations,” Appl. Phys. Lett.100, 061111 (2012). [CrossRef]
  13. E. F. Pecora, W. Zhang, A. Yu. Nikiforov, J. Yin, R. Paiella, L. D. Negro, and T. D. Moustakas, “Sub-250 nm light emission and optical gain in AlGaN materials,” J. Appl. Phys.113(1), 013106 (2013). [CrossRef]
  14. A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, and M. Ikeda, “Two-dimensional exciton dynamics and gain formation processes in InxGa1-xN multiple quantum wells,” Phys. Rev. B60(24), 16660–16666 (1999). [CrossRef]
  15. A. Žukauskas, K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, S. Juršėnas, S. Miasojedovas, V. Yu. Ivanov, M. Godlewski, C. Skierbiszewski, M. Siekacz, G. Franssen, P. Perlin, T. Suski, and I. Grzegory, “Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates,” Phys. Status Solidi B243(7), 1614–1618 (2006). [CrossRef]
  16. V. N. Jmerik, A. M. Mizerov, A. A. Sitnikova, P. S. Kop’ev, S. V. Ivanonv, E. V. Lutsenko, N. P. Tarasuk, N. V. Rzheutskii, and G. P. Yablonskii, “Low-threshold 303 nm lasing in AlGaN-based multiple-quantum well structures with an asymmetric waveguide grown by plasma-assisted molecular beam epitaxy on c-sapphire,” Appl. Phys. Lett.96(14), 141112 (2010). [CrossRef]
  17. V. N. Jmerik, A. N. Mizerov, T. V. Shubina, A. A. Toropov, K. G. Belyaev, A. A. Sitnikova, M. A. Yagovkina, P. S. Kopev, E. V. Lutsenko, A. V. Danilchyk, N. V. Rzheutskii, G. P. Yablonskii, B. Monemar, and S. V. Ivanov, “Optically pumped lasing at 300.4 nm in AlGaN MQW structures grown by plasma-assisted molecular beam epitaxy on c-Al2O3,” Phys. Status Solidi A207(6), 1313–1317 (2010). [CrossRef]
  18. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “"Blue” temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett.71(5), 569–571 (1997). [CrossRef]
  19. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1-xN layers,” J. Appl. Phys.95(9), 4670–4674 (2004). [CrossRef]
  20. N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys,” Appl. Phys. Lett.87(24), 242104 (2005). [CrossRef]
  21. J. Mickevičius, G. Tamulaitis, E. Kuokštis, K. Liu, M. S. Shur, J. P. Zhang, and R. Gaska, “Well-width-dependent carrier lifetime in AlGaN/AlGaN quantum wells,” Appl. Phys. Lett.90(13), 131907 (2007). [CrossRef]
  22. J. Mickevičius, J. Jurkevičius, M. S. Shur, J. Yang, R. Gaska, and G. Tamulaitis, “Photoluminescence efficiency droop and stimulated recombination in GaN epilayers,” Opt. Express20(23), 25195–25200 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited