OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A589–A600

RCWA and FDTD modeling of light emission from internally structured OLEDs

Michiel Koen Callens, Herman Marsman, Lieven Penninck, Patrick Peeters, Harry de Groot, Jan Matthijs ter Meulen, and Kristiaan Neyts  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A589-A600 (2014)
http://dx.doi.org/10.1364/OE.22.00A589


View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(240.0310) Optics at surfaces : Thin films
(260.6970) Physical optics : Total internal reflection
(310.4165) Thin films : Multilayer design

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: December 20, 2013
Revised Manuscript: February 21, 2014
Manuscript Accepted: February 26, 2014
Published: March 12, 2014

Citation
Michiel Koen Callens, Herman Marsman, Lieven Penninck, Patrick Peeters, Harry de Groot, Jan Matthijs ter Meulen, and Kristiaan Neyts, "RCWA and FDTD modeling of light emission from internally structured OLEDs," Opt. Express 22, A589-A600 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91(2), 595–604 (2002). [CrossRef]
  2. S. Möller and S. R. Forrest, “Improved light out-coupling in organic light-emitting diodes employing ordered microlens arrays,” J. Appl. Phys.91(5), 3324–3327 (2002). [CrossRef]
  3. Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett.89(17), 173502 (2006). [CrossRef]
  4. C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lüssem, L. Müller-Meskamp, K. Leo, M. C. Gather, and R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express21(14), 16319–16330 (2013). [CrossRef] [PubMed]
  5. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics2(8), 483–487 (2008). [CrossRef]
  6. M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61(16), 11125–11135 (2000). [CrossRef]
  7. C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, and H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Org. Electron.13(6), 1073–1080 (2012). [CrossRef]
  8. J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, “Random nano-structures as light extraction functionals for organic light-emitting diode applications,” Org. Electron.15(1), 196–202 (2014). [CrossRef]
  9. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  10. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/ .
  11. Kahnert and F. Michael, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf.79-80, 775–824 (2003).
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  13. P. Bienstman, “CAMFR manual,” version 1.3. http://camfr.sourceforge.net/docs/camfr.pdf .
  14. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” PhD thesis (2001).
  15. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15(4), 962–971 (1998). [CrossRef]
  16. S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett.92(22), 223307 (2008). [CrossRef]
  17. Fluxim,”Setfos 3.2,” Release 3.2.2657, http://www.fluxim.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited