OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A622–A632

Zinc oxide nanowire arrays for silicon core/shell solar cells

Asman Tamang, Minoli Pathirane, Rion Parsons, Miriam M. Schwarz, Bright Iheanacho, Vladislav Jovanov, Veit Wagner, William S. Wong, and Dietmar Knipp  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A622-A632 (2014)
http://dx.doi.org/10.1364/OE.22.00A622


View Full Text Article

Enhanced HTML    Acrobat PDF (3221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optics of core / shell nanowire solar cells was investigated. The optical wave propagation was studied by finite difference time domain simulations using realistic interface morphologies. The interface morphologies were determined by a 3D surface coverage algorithm, which provides a realistic film formation of amorphous silicon films on zinc oxide nanowire arrays. The influence of the nanowire dimensions on the interface morphology and light trapping was investigated and optimal dimensions of the zinc oxide nanowire were derived.

© 2014 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 19, 2014
Published: March 17, 2014

Citation
Asman Tamang, Minoli Pathirane, Rion Parsons, Miriam M. Schwarz, Bright Iheanacho, Vladislav Jovanov, Veit Wagner, William S. Wong, and Dietmar Knipp, "Zinc oxide nanowire arrays for silicon core/shell solar cells," Opt. Express 22, A622-A632 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Kuang, K. H. M. van der Werf, Z. S. Houweling, and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si: H absorber layer,” Appl. Phys. Lett.98(11), 113111 (2011). [CrossRef]
  2. X. Xie, X. Zeng, P. Yang, H. Li, J. Li, X. Zhang, and Q. Wang, “Radial nip structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel,” Nanoscale Res. Lett.7(621), 1–6 (2012). [PubMed]
  3. W. J. Nam, L. Ji, T. L. Benanti, V. V. Varadan, S. Wagner, Q. Wang, W. Nemeth, D. Neidich, and S. J. Fonash, “Incorporation of a light and carrier collection management nano-element array into superstrate a-Si: H solar cells,” Appl. Phys. Lett.99(7), 073113 (2011). [CrossRef]
  4. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep.31465 (2013).
  5. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical Properties of Crystalline-Amorphous Core-Shell Silicon Nanowires,” Nano Lett.10(10), 4093–4098 (2010). [CrossRef] [PubMed]
  6. M. J. Naughton, K. Kempa, Z. F. Ren, Y. Gao, J. Rybczynski, N. Argenti, W. Gao, Y. Wang, Y. Peng, J. R. Naughton, G. McMahon, T. Paudel, Y. C. Lan, M. J. Burns, A. Shepard, M. Clary, C. Ballif, F.-J. Haug, T. Söderström, O. Cubero, and C. Eminian, “Efficient nanocoax-based solar cells,” Phys. Status Solidi (RRL)- Rapid Res. Lett.4(7), 181–183 (2010).
  7. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  8. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  9. D. L. Staebler and C. R. Wronski, “Wronski, Reversible conductivity changes in discharge produced amorphous Si,”Appl. Phys. Lett.31(4), 292 (1977).
  10. O. Lupan, V. M. Guérin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté, “Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells,” J. Photochem. Photobiol. Chem.211(1), 65–73 (2010). [CrossRef]
  11. J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nat. Mater.10(8), 596–601 (2011). [CrossRef] [PubMed]
  12. B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc.125(15), 4430–4431 (2003). [CrossRef] [PubMed]
  13. D. J. Rogers, V. E. Sandana, F. H. Teherani, M. Razeghi, and H. J. Drouhin, “Fabrication of nanostructured heterojunction LEDs using self-forming moth eye type arrays of n-ZnOnanocones grown on p-si (111)substrates by pulsed laser deposition,” Proc. SPIE 7217, Zinc Oxide Materials and DevicesIV, 721708 (2009). [CrossRef]
  14. M. M. Schwarz, T. Richter, R. Pearson, A. Tamang, T. Balster, D. Knipp, and V. Wagner, “Controlled electrodeposition of ZnO nanostructures for enhanced light scattering properties,” J. Appl. Electrochem.44, 1–8 (2014).
  15. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling (Prentice Hall, 2000), Chap. 5.
  16. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005). [CrossRef]
  17. C. C. Tsai, J. C. Knights, G. Chang, and B. Wacker, “Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon,” J. Appl. Phys.59(8), 2998–3001 (1986). [CrossRef]
  18. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 1991), Chap. 2.
  19. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express20(6), 6340–6347 (2012). [CrossRef] [PubMed]
  20. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, M. Zeman, and D. Knipp, “Influence of interface morphologies on amorphous silicon thin film solar cells prepared on randomly textured substrates,” Sol. Energy Mater. Sol. Cells112, 182–189 (2013). [CrossRef]
  21. V. Jovanov, X. Xu, S. Shrestha, M. Schulte, J. Hüpkes, and D. Knipp, “Predicting the interface morphologies of silicon films on arbitrary substrates: application in solar cells,” ACS Appl. Mater. Interfaces5(15), 7109–7116 (2013). [CrossRef] [PubMed]
  22. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells92(12), 1689–1696 (2008). [CrossRef]
  23. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011). [CrossRef]
  24. A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys.105(8), 083107 (2009). [CrossRef]
  25. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(S4Suppl 4), A865–A874 (2011). [CrossRef] [PubMed]
  26. R. Dewan, J. I. Owen, D. Madzharov, V. Jovanov, J. Hüpkes, and D. Knipp, “Analyzing nanotextured transparent conductive oxides for efficient light trapping in silicon thin film solar cells,” Appl. Phys. Lett.101(10), 103903 (2012). [CrossRef]
  27. A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-Trapping and Interface Morphologies of Amorphous Silicon Solar Cells on Multiscale Surface TexturedSubstrates,” IEEE J. Photovolatics4(1), 16–21 (2013).
  28. S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro, and L. Castens, “High efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI R&D reactor,” 24th European Photo. Solar Energy Conf., 21–25(2009, September).
  29. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000). [CrossRef]
  30. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  31. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited