OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A642–A650

Antireflection-enhanced color by a natural graded refractive index (GRIN) structure

Chad M. Eliason and Matthew D. Shawkey  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A642-A650 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanostructured materials like graded refractive index (GRIN) structures in moth eyes have inspired the design of novel antireflective coatings. Such structures are more flexible than uniform coatings, but applications have been mainly limited to broadband antireflection in solar cells and LEDs. Here we show that cylindrical pigment granules in two bird species (Polyplectron bicalcaratum and Patagioenas fasciata) form a GRIN that suppresses interference and expands the range of colors produced by a multilayer. These results demonstrate that a GRIN structure can function like a pigment (i.e. through selective, independent wavelength blocking) to generate unique colors and may inspire the design of novel antireflective and structurally colored coatings.

© 2014 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.6860) Thin films : Thin films, optical properties
(330.1690) Vision, color, and visual optics : Color
(160.1435) Materials : Biomaterials

ToC Category:
Subwavelength structures, nanostructures

Original Manuscript: December 11, 2013
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 3, 2014
Published: March 19, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Chad M. Eliason and Matthew D. Shawkey, "Antireflection-enhanced color by a natural graded refractive index (GRIN) structure," Opt. Express 22, A642-A650 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008), pp. 1–367.
  2. I. Newton, Opticks (Dover Publications, 1704).
  3. J. Grandidier, R. A. Weitekamp, M. G. Deceglie, D. M. Callahan, C. Battaglia, C. R. Bukowsky, C. Ballif, R. H. Grubbs, and H. A. Atwater, “Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere arrays,” Phys. Status Solidi A 210(2), 255–260 (2013). [CrossRef]
  4. C.-Y. Fang, Y.-L. Liu, Y.-C. Lee, H.-L. Chen, D.-H. Wan, and C.-C. Yu, “Nanoparticle Stacks with Graded Refractive Indices Enhance the Omnidirectional Light Harvesting of Solar Cells and the Light Extraction of Light-Emitting Diodes,” Adv. Funct. Mater. 23(11), 1412–1421 (2013). [CrossRef]
  5. E. Hecht and A. Zajac, Optics, 4 ed. (Addison Wesley, 2002).
  6. E. F. Schubert, J. K. Kim, and J.-Q. Xi, “Low‐refractive‐index materials: A new class of optical thin‐film materials,” Phys. Status Solidi B 244(8), 3002–3008 (2007). [CrossRef]
  7. S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).
  8. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  9. H. Durrer, ““Schillerfarben der vogelfeder als evolutionsproblem,” Denkschr. Schweiz,” Naturf. Ges. 91, 1–127 (1977).
  10. R. O. Prum, “Anatomy, physics, and evolution of structural colors,” in Bird Coloration, Vol. I, Mcgraw, K. J. and Hill, G. E., eds. (Harvard Univ. Press, 2006), Vol. 1, pp. 295–353.
  11. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 366(1565), 709–723 (2011). [CrossRef] [PubMed]
  12. M. D. Shawkey, A. M. Estes, L. M. Siefferman, and G. E. Hill, “Nanostructure predicts intraspecific variation in ultraviolet-blue plumage colour,” Proc. Biol. Sci. 270(1523), 1455–1460 (2003). [CrossRef] [PubMed]
  13. M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with ImageJ,” Biophoton. Int. 11, 36–42 (2004).
  14. R. Maia, C. M. Eliason, P.-P. Bitton, S. M. Doucet, and M. D. Shawkey, “pavo: an R package for the analysis, visualization and organization of spectral data,” Methods Ecol. Evol. 4, 906–913 (2013).
  15. R. Diamant, A. Garcí-Valenzuela, and M. Fernández-Guasti, “Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models,” J. Opt. Soc. Am. A 29(9), 1912–1921 (2012). [CrossRef] [PubMed]
  16. B. Q. Dong, X. H. Liu, T. R. Zhan, L. P. Jiang, H. W. Yin, F. Liu, and J. Zi, “Structural coloration and photonic pseudogap in natural random close-packing photonic structures,” Opt. Express 18(14), 14430–14438 (2010). [CrossRef] [PubMed]
  17. M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, “Packing hyperspheres in high-dimensional Euclidean spaces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 041127 (2006). [CrossRef] [PubMed]
  18. G. Jellison., “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993). [CrossRef]
  19. A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  20. D. Brink and N. van der Berg, “Structural colours of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys. 37(5), 813–818 (2004). [CrossRef]
  21. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  22. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011). [CrossRef] [PubMed]
  23. S. S. Yoshioka and S. S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051917 (2011). [CrossRef] [PubMed]
  24. M. Vorobyev, D. Osorio, A. T. D. Bennett, N. J. Marshall, and I. C. Cuthill, “Tetrachromacy, oil droplets and bird plumage colours,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 183(5), 621–633 (1998). [CrossRef] [PubMed]
  25. J. A. Endler and P. Mielke., “Comparing entire colour patterns as birds see them,” Biol. J. Linn. Soc. Lond. 86(4), 405–431 (2005). [CrossRef]
  26. S. C. Lee, “Dependent scattering of an obliquely incident plane wave by a collection of parallel cylinders,” J. Appl. Phys. 68(10), 4952–4957 (1990). [CrossRef]
  27. B. E. Perilloux, Thin-Film Design: Modulated Thickness and Other Stopband Design Methods (SPIE Press, 2002).
  28. S. Orfanidis, Electromagnetic Waves and Antennas; available at http://www.ee.rutgers.edu/orfanidi/ewa/ (last accessed June 2013).
  29. E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural Color of Rock Dove’s Neck Feather,” J. Phys. Soc. Jpn. 77(12), 124801 (2008). [CrossRef]
  30. M. D. Shawkey, L. D’Alba, J. Wozny, C. M. Eliason, J. A. H. Koop, and L. Jia, “Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers,” Zoology (Jena) 114(2), 59–68 (2011). [CrossRef] [PubMed]
  31. Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C.-H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24(23), 235202 (2013). [CrossRef] [PubMed]
  32. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013). [PubMed]
  33. M. Li, L. Zeng, Y. Chen, L. Zhuang, X. Wang, and H. Shen, “Realization of Colored Multicrystalline Silicon Solar Cells with SiO 2/SiN x: H Double Layer Antireflection Coatings,” Int. J. Photoenergy 2013, 1–8 (2013). [CrossRef]
  34. R. Maia, R. H. F. Macedo, and M. D. Shawkey, “Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization,” J. R. Soc. Interface 9(69), 734–743 (2012). [CrossRef] [PubMed]
  35. K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale forces and their uses in self-assembly,” Small 5(14), 1600–1630 (2009). [CrossRef] [PubMed]
  36. M. Nolte, I. Dönch, and A. Fery, “Freestanding polyelectrolyte films as sensors for osmotic pressure,” ChemPhysChem 7(9), 1985–1989 (2006). [CrossRef] [PubMed]
  37. M. L. Bruening, D. M. Dotzauer, P. Jain, L. Ouyang, and G. L. Baker, “Creation of functional membranes using polyelectrolyte multilayers and polymer brushes,” Langmuir 24(15), 7663–7673 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited