OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A651–A662

Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: Critical role of absorber front textures

Yao-Chung Tsao, Christian Fisker, and Thomas Garm Pedersen  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A651-A662 (2014)
http://dx.doi.org/10.1364/OE.22.00A651


View Full Text Article

Enhanced HTML    Acrobat PDF (2533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

© 2014 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces
(050.6624) Diffraction and gratings : Subwavelength structures
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: January 13, 2014
Revised Manuscript: February 20, 2014
Manuscript Accepted: March 7, 2014
Published: March 19, 2014

Citation
Yao-Chung Tsao, Christian Fisker, and Thomas Garm Pedersen, "Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: Critical role of absorber front textures," Opt. Express 22, A651-A662 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Meier, S. Dubail, R. Platz, P. Torres, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, C. Hof, D. Fischer, H. Keppner, R. Flückiger, A. Shah, V. Shklover, and K.-D. Ufert, “Towards high-efficiency thin-film silicon solar cells with the “micromorph” concept,” Sol. Energy Mater. Sol. Cells49(1-4), 35–44 (1997).
  2. T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502 (2002). [CrossRef] [PubMed]
  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature432(7016), 488–492 (2004). [CrossRef] [PubMed]
  4. B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process.69(2), 155–167 (1999). [CrossRef]
  5. V. Jovanov, U. Palanchoke, P. Magnus, H. Stiebig, J. Hüpkes, P. Sichanugrist, M. Konagai, S. Wiesendanger, C. Rockstuhl, and D. Knipp, “Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies,” Opt. Express21(S4), A595–A606 (2013). [CrossRef] [PubMed]
  6. C. Battaglia, K. Söderström, J. Escarré, F.-J. Haug, D. Dominé, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, “Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting,” Appl. Phys. Lett.96(21), 213504 (2010). [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  8. C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express21(S5), A786–A797 (2013). [CrossRef] [PubMed]
  9. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012). [CrossRef] [PubMed]
  10. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  11. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express19(1), 128–140 (2011). [CrossRef] [PubMed]
  12. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express18(S3), A293–A299 (2010). [CrossRef] [PubMed]
  13. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [CrossRef] [PubMed]
  14. T. Khaleque, H. G. Svavarsson, and R. Magnusson, “Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications,” Opt. Express21(S4), A631–A641 (2013). [CrossRef] [PubMed]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2), A237–A245 (2010). [CrossRef] [PubMed]
  16. J. J. Lee, S. Y. Park, K. B. Choi, and G. H. Kim, “Nano-scale patterning using the roll typed UV-nanoimprint lithography tool,” Microelectron. Eng.85(5–6), 861–865 (2008). [CrossRef]
  17. M. A. González Lazo, R. Teuscher, Y. Leterrier, J. A. E. Månson, C. Calderone, A. Hessler-Wyser, P. Couty, Y. Ziegler, and D. Fischer, “UV-nanoimprint lithography and large area roll-to-roll texturization with hyperbranched polymer nanocomposites for light-trapping applications,” Sol. Energy Mater. Sol. Cells103, 147–156 (2012). [CrossRef]
  18. C. Battaglia, J. Escarré, K. Söderström, M. Charrière, F.-J. Haug, M. Despeisse, F.-J. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics5(9), 535–538 (2011). [CrossRef]
  19. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano3(8), 2304–2310 (2009). [CrossRef] [PubMed]
  20. M. D. Fagan, B. H. Kim, and D. G. Yao, “A novel process for continuous thermal embossing of large-area nanopatterns onto polymer films,” Adv. Polym. Technol.28(4), 246–256 (2009). [CrossRef]
  21. T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics,” J. Appl. Phys.103(11), 114509 (2008). [CrossRef]
  22. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations,” Appl. Opt.31(4), 440 (1992). [CrossRef] [PubMed]
  23. S.-K. Kim, H.-S. Ee, W. Choi, S.-H. Kwon, J.-H. Kang, Y.-H. Kim, H. Kwon, and H.-G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011). [CrossRef]
  24. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano8(1), 834–840 (2014). [CrossRef] [PubMed]
  25. C. Fisker and T. G. Pedersen, “Optimization of imprintable nanostructured a-Si solar cells: FDTD study,” Opt. Express21(S2), A208–A220 (2013). [CrossRef] [PubMed]
  26. Y.-C. Tsao, T. Søndergaard, E. Skovsen, L. Gurevich, K. Pedersen, and T. G. Pedersen, “Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors,” Opt. Express21(S1), A84–A95 (2013). [CrossRef] [PubMed]
  27. Y.-C. Tsao, C. Fisker, and T. G. Pedersen, “Optical absorption of amorphous silicon on anodized aluminum substrates for solar cell applications,” Opt. Commun.315, 17–25 (2014). [CrossRef]
  28. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett.93(14), 143501 (2008). [CrossRef]
  29. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, “Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization,” J. Electrochem. Soc.153(9), B384–B391 (2006). [CrossRef]
  30. A. S. Lin, Y.-K. Zhong, S.-M. Fu, C.-W. Tseng, S.-Y. Lai, and W.-M. Lai, “Lithographically fabricable, optimized three-dimensional solar cell random structure,” J. Opt.15(10), 105007 (2013). [CrossRef]
  31. A. Lin and J. D. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells92(12), 1689–1696 (2008). [CrossRef]
  32. L. Yuan, F. Chen, C. Zheng, J. Liu, and N. Alemu, “Parasitic absorption effect of metal nanoparticles in the dye-sensitized solar cells,” Phys. Status Solidi A209(7), 1376–1379 (2012). [CrossRef]
  33. Lumerical FDTD Solutions ( http://www.lumerical.com/tcad-products/fdtd/ ).
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  35. S. A. Sopra, Materials data ( http://www.sspectra.com/sopra.html ).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited