OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A671–A678

Novel broadband glass phosphors for high CRI WLEDs

Li-Yin Chen, Wei-Chih Cheng, Chun-Chin Tsai, Jin-Kai Chang, Yi-Chung Huang, Jhih-Ci Huang, and Wood-Hi Cheng  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A671-A678 (2014)
http://dx.doi.org/10.1364/OE.22.00A671


View Full Text Article

Enhanced HTML    Acrobat PDF (1625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New broadband glass phosphors with excellent thermal stability were proposed and experimentally demonstrated for white light-emitting-diodes (WLEDs). The novel glass phosphors were realized through dispersing multiple phosphors into SiO2 based glass (SiO2-Na2O-Al2O3-CaO) at 680°C. Y3Al5O12:Ce3+ (YAG), Lu3Al5O12:Ce3+ (LuAG), and CaAlSiN3: Eu2+ (nitride) phosphor crystals were chosen respectively as the yellow, green, and red emitters of the glass phosphors. The effect of sintering temperature on inter-diffusion reduction between phosphor crystals and amorphous SiO2 in nitride-doped glass phosphors was studied and evidenced by the aid of high-resolution transmission electron microscopy (HRTEM). Broadband glass phosphors with high quantum-yield of 55.6% were thus successfully realized through the implementation of low sintering temperature. Proof-of-concept devices utilizing the novel broadband phosphors were developed to generate high-quality cool-white light with trisstimulus coordinates (x, y) = (0.358, 0.288), color-rending index (CRI) = 85, and correlated color temperature (CCT) = 3923K. The novel broadband glass phosphors with excellent thermal stability are essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials

ToC Category:
Materials

History
Original Manuscript: January 14, 2014
Revised Manuscript: March 8, 2014
Manuscript Accepted: March 13, 2014
Published: March 21, 2014

Citation
Li-Yin Chen, Wei-Chih Cheng, Chun-Chin Tsai, Jin-Kai Chang, Yi-Chung Huang, Jhih-Ci Huang, and Wood-Hi Cheng, "Novel broadband glass phosphors for high CRI WLEDs," Opt. Express 22, A671-A678 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chhajed, Y. Xi, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys.97(5), 054506 (2005). [CrossRef]
  2. P. A. Levermore, A. B. Dyatkin, Z. M. Elshenawy, H. Pang, R. C. Kwong, R. Ma, M. S. Weaver, and J. J. Brown, “Phosphorescent OLEDs: Enabling Solid State Lighting with Lower Temperature and Longer Lifetime,” Proc. SID Symposium Digest. 42(72.2), 1060, (2011). [CrossRef]
  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron.8(2), 310–320 (2002).
  4. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Displ. Technol.3(2), 160–175 (2007). [CrossRef]
  5. J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express16(26), 21835–21842 (2008). [CrossRef] [PubMed]
  6. S. R. Lim, D. Kang, O. A. Ogunseitan, and J. M. Schoenung, “Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs,” Environ. Sci. Technol.47(2), 1040–1047 (2013). [CrossRef] [PubMed]
  7. J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express18(5), 5055–5060 (2010). [CrossRef] [PubMed]
  8. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett.90(19), 191101 (2007). [CrossRef]
  9. C. C. Lin, Y. S. Zheng, H. Y. Chen, C. H. Ruan, G. W. Xiao, and R. S. Liu, “Improving Optical Properties of White LED Fabricated by a Blue LED Chip with Yellow/Red Phosphors,” J. Electrochem. Soc.157(9), H900–H903 (2010). [CrossRef]
  10. Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Tech.33(4), 761–766 (2010). [CrossRef]
  11. C. C. Tsai, J. Wang, M. H. Chen, Y. C. Hsu, Y. J. Lin, C. W. Lee, S. B. Huang, H. L. Hu, and W. H. Cheng, “Investigation of Ce:YAG doping effect on thermal aging for high-power phosphor-converted white-light-emitting diode,” Trans. Device,” Mater. Res.9(3), 367–371 (2009).
  12. J. Wang, C. C. Tsai, W. C. Cheng, M. H. Chen, C. H. Chung, and W. H. Cheng, “High thermal stability of phosphor converted white light-emitting diodes employing CeYAG-doped glass,” IEEE J. Sel. Top. Quantum Electron.17(3), 741–746 (2011). [CrossRef]
  13. S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence Characteristics of YAG Glass–Ceramic Phosphor for White LED,” IEEE J. Sel. Top. Quantum Electron.14(5), 1387–1391 (2008). [CrossRef]
  14. H. Segawa, H. Yoshimizu, N. Hirosaki, and S. Inoue, “Fabrication of silica glass containingyellow oxynitride phosphor by the sol-gel process,” Sci. Technol. Adv. Mater.12(3), 034407 (2011). [CrossRef]
  15. L. Yang, M. Chen, Z. Lv, S. Wang, X. Liu, and S. Liu, “Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging,” Opt. Lett.38(13), 2240–2243 (2013). [CrossRef] [PubMed]
  16. H. Segawa, S. Ogata, N. Hirosaki, S. Inoue, T. Shimizu, M. Tansho, S. Ohki, and K. Deguchi, “Fabrication of glasses of dispersed yellow oxynitride phosphor for white light-emitting diodes,” Opt. Mater.33(2), 170–175 (2010). [CrossRef]
  17. H. P. Fan, H. S. Chiao, H. H. Chang, and K. L. Ma, CN patent 101723586 B (2011) (in Chinese).
  18. Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, “Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications,” Opt. Lett.37(15), 3276–3278 (2012). [CrossRef] [PubMed]
  19. C. C. Tsai, W. C. Cheng, J. K. Chang, L. Y. Chen, J. H. Chen, Y. C. Hsu, and W. H. Cheng, “Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes,” IEEE J. Displ. Technol.9(6), 427–432 (2013). [CrossRef]
  20. L.-Y. Chen, W.-C. Cheng, C.-C. Tsai, Y.-C. Huang, Y.-S. Lin, and W.-H. Cheng, “High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+:YAG inter-diffusion,” Opt. Mater. Express4(1), 121–128 (2014). [CrossRef]
  21. L. Y. Chen, J. K. Chang, Y. R. Wu, W. C. Cheng, J. H. Chen, C. C. Tsai, and W. H. Cheng, “Optical model for novel glass based phosphor converted white light emitting diodes,” IEEE J. Displ. Technol.9(6), 441–446 (2013). [CrossRef]
  22. Y. Ohno, “Optical metrology for LEDs and solid state lighting,” Proc. SPIE6046, 604625 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited