OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A686–A704

Light diffraction by concentrator Fresnel lenses

Thorsten Hornung and Peter Nitz  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A686-A704 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as primary optical elements focusing sunlight onto small solar cells or onto entrance apertures of secondary optical elements attached to the solar cells. Calculations using the Young-Maggi-Rubinowicz theory of diffraction yield analytical expressions for the amount of light spilling outside these target areas due to diffraction at the edges of the concentrator Fresnel lenses. Explicit equations are given for the diffraction loss due to planar Fresnel lenses with small prisms and due to arbitrarily shaped Fresnel lenses. Furthermore, the cases of illumination by monochromatic, polychromatic, totally spatially coherent and partially spatially coherent light (e.g. from the solar disc) are treated, resulting in analytical formulae. Examples using realistic values show losses due to diffraction of up to several percent.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(220.1770) Optical design and fabrication : Concentrators

ToC Category:
Solar Concentrators

Original Manuscript: January 13, 2014
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 19, 2014
Published: March 26, 2014

Thorsten Hornung and Peter Nitz, "Light diffraction by concentrator Fresnel lenses," Opt. Express 22, A686-A704 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl. 21(1), 827–837 (2013). [CrossRef]
  2. G. Zubi, J. L. Bernal-Agustin, and G. V. Fracastoro, “High concentration photovoltaic systems applying IIIV cells,” Renew. Sustain. Energy Rev. 13(9), 2645–2652 (2009). [CrossRef]
  3. J. R. Egger, “Use Of Fresnel Lenses In Optical Systems: Some Advantages And Limitations,” Proc. SPIE 193, 63–69 (1979). [CrossRef]
  4. A. Davis and F. Kühnlenz, “Optical design using Fresnel lenses,” Optik Photonik 2(4), 52–55 (2007). [CrossRef]
  5. F. Duerr, Y. Meuret, and H. Thienpont, “Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation,” Appl. Opt. 49(12), 2339–2346 (2010). [CrossRef] [PubMed]
  6. F. Duerr, Y. Meuret, and H. Thienpont, “Down scaling of micro-structured Fresnel lenses for solar concentration: a quantitative investigation,” Proc. SPIE 7725, 772509 (2010). [CrossRef]
  7. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  8. G. Kirchhoff, “Zur Theorie der Lichtstrahlen,” Annalen der Physik 254(4), 663–695 (1883). [CrossRef]
  9. G. Kirchhoff, “Zur Theorie der Lichtstrahlen,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 2, 641–669 (1882).
  10. W. Hoßfeld, Tageslichtsteuerung mit prismatischen Mikrostrukturen im Übergangsbereich von diffraktiver und geometrischer Optik (doctoral thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2004).
  11. T. Young, “On the theory of light and colours,” Philos. Trans. R. Soc. Lond. 92(0), 12–48 (1802). [CrossRef]
  12. G. Maggi, “Sulla propagazione libera e perturbata delle onde luminose in un mezzo isotropo,” Ann. Math. 16, 21–48 (1888).
  13. A. Rubinowicz, “Zur Kirchhoffschen Beugungstheorie,” Annalen der Physik 378(5-6), 339–364 (1924). [CrossRef]
  14. A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen,” Annalen der Physik 358(12), 257–278 (1917). [CrossRef]
  15. P. B. S. Kumar and G. S. Ranganath, “Geometrical theory of diffraction,” Pramana 37(6), 457–488 (1991). [CrossRef]
  16. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz Theory of the Boundary Diffraction Wave - Part I,” J. Opt. Soc. Am. 52(6), 615–622 (1962). [CrossRef]
  17. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz Theory of the Boundary Diffraction Wave - Part II,” J. Opt. Soc. Am. 52(6), 626–636 (1962). [CrossRef]
  18. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater. 29(11), 1481–1490 (2007). [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  20. W. H. Carter, “Coherence theory,” in Handbook of Optics M. Bass, E. W. van Stryland, D. R. Williams, and W. L. Wolfe, eds. (McGraw-Hill, 1995, vol. 1).
  21. K. K. Sharma, Optics: Principles and Applications (Academic, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited