OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A765–A778

The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells

Sven Leyre, Jan Cappelle, Guy Durinck, Aimi Abass, Johan Hofkens, Geert Deconinck, and Peter Hanselaer  »View Author Affiliations

Optics Express, Vol. 22, Issue S3, pp. A765-A778 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To enhance the efficiency of solar cells, a luminescent down shifting layer can be applied in order to adapt the solar spectrum to the spectral internal quantum efficiency of the semiconductor. Optimization of such luminescent down shifting layers benefits from quick and direct evaluation methods. In this paper, the potential of the adding-doubling method is investigated to simulate the optical behavior of an encapsulated solar cell including a planar luminescent down shifting layer. The results of the adding-doubling method are compared with traditional Monte Carlo ray tracing simulations. The average relative deviation is found to be less than 1.5% for the absorptance in the active layer and the reflectance from the encapsulated cell, while the computation time can be decreased with a factor 52. Furthermore, the adding-doubling method is adopted to investigate the suitability of the SrB4O7:5%Sm2 + ,5%Eu2 + phosphor as a luminescent down shifting material in combination with a Copper Indium Gallium Selenide solar cell. A maximum increase of 9.0% in the short-circuit current can be expected if precautions are taken to reduce the scattering by matching the refractive index of host material to the phosphor particles. To be useful as luminescent down shifting material, the minimal value of the quantum yield of the phosphor is determined to be 0.64.

© 2014 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(350.6050) Other areas of optics : Solar energy
(080.1753) Geometric optics : Computation methods

ToC Category:

Original Manuscript: October 22, 2013
Revised Manuscript: January 18, 2014
Manuscript Accepted: January 26, 2014
Published: April 1, 2014

Sven Leyre, Jan Cappelle, Guy Durinck, Aimi Abass, Johan Hofkens, Geert Deconinck, and Peter Hanselaer, "The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells," Opt. Express 22, A765-A778 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. G. J. H. M. van Sark, “Enhancement of solar cell performance by employing planar spectral converters,” Appl. Phys. Lett. 87(15), 151117 (2005). [CrossRef]
  2. E. Klampaftis, D. Ross, S. Seyrling, A. N. Tiwari, and B. S. Richards, “Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material,” Sol. Energy Mater. Sol. Cells 101, 62–67 (2012). [CrossRef]
  3. P. Chung, H.-H. Chung, and P. H. Holloway, “Phosphor coatings to enhance Si photovoltaic cell performance,” J. Vac. Sci. Technol. A 25(1), 61–66 (2007). [CrossRef]
  4. W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen, and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters,” Sol. Energy Mater. Sol. Cells 87(1-4), 395–409 (2005). [CrossRef]
  5. H. J. Hovel, R. T. Hodgson, and J. M. Woodall, “The effect of fluorescent wavelength shifting on solar cell spectral response,” Sol. Energy Mater. 2(1), 19–29 (1979). [CrossRef]
  6. B. S. Richards and K. R. McIntosh, “Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: Ray-Tracing Simulations,” Prog. Photovolt. Res. Appl. 15(1), 27–34 (2007). [CrossRef]
  7. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl. 19(3), 345–351 (2011). [CrossRef]
  8. C. del Cañizo, I. Tobías, J. Pérez-Bedmar, A. C. Pan, and A. Luque, “Implementation of a Monte Carlo method to model photon conversion for solar cells,” Thin Solid Films 516(20), 6757–6762 (2008). [CrossRef]
  9. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009). [CrossRef]
  10. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011). [CrossRef] [PubMed]
  11. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. Lond. 11(0), 545–556 (1860). [CrossRef]
  12. W. J. Wiscombe, “On initialization, error and flux conservation in the doubling method,” J. Quant. Spectrosc. Radiat. Transf. 16(8), 637–658 (1976). [CrossRef]
  13. J. E. Hansen, “Radiative transfer by doubling very thin layers,” Astrophys. J. 155, 565–573 (1969). [CrossRef]
  14. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993). [CrossRef] [PubMed]
  15. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008). [CrossRef] [PubMed]
  16. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32(4), 399–410 (1993). [CrossRef] [PubMed]
  17. S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express 20(16), 17856–17872 (2012). [CrossRef] [PubMed]
  18. K. R. McIntosh, J. N. Cotsell, A. W. Norris, N. E. Powell, and B. M. Ketola, “An optical comparison of silicone and EVA encapsulants for conventional silicon PV modules: A ray-tracing study,” in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (Philadelphia, 2009), pp. 544–549. [CrossRef]
  19. P. K. Johnson, A. O. Pudov, J. R. Sites, K. Ramanathan, F. S. Hasoon, and D. E. Tarrant, “Interface properties of CIGS(S)/buffer layers formed by the Cd-partial electroyle process,” in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, 2002), pp. 1–4.
  20. C. Battaglia, M. Boccard, F.-J. Haug, and C. Ballif, “Light trapping in solar cells: When does a Lambertian scatterer scatter Lambertianly?” J. Appl. Phys. 112(9), 094504 (2012). [CrossRef]
  21. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express 20(S3), A395–A405 (2012). [CrossRef] [PubMed]
  22. Z. Liu, S. Liu, K. Wang, and X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49(2), 247–257 (2010). [CrossRef] [PubMed]
  23. L. Junyuan, R. Haibo, W. Wei, W. Xianlong, Z. Linsong, Z. Da, W. Xuemei, and L. Qiaolin, “Optical simulation of phosphor layer of white LEDs,” J. Semicond. 34(5), 053008 (2013). [CrossRef]
  24. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The Delta-Eddington Approximation for radiative flux transfer,” J. Atmos. Sci. 33(12), 2452–2459 (1976). [CrossRef]
  25. J.-G. Liu and M. Ueda, “High refractive index polymers: fundamental research and practical applications,” J. Mater. Chem. 19(47), 8907–8919 (2009). [CrossRef]
  26. I. Denisyuk and M. Fokina, “A review of high nanoparticles concentration composites: Semiconductor and high refractive index materials,” in Nanocrystals, Y. Masuda, Ed. (InTech, 2010), pp. 109–142.
  27. T. C. Choy, Effective Medium Theory: Principles and Applications. (Oxford: Clarendon Press, 1999).
  28. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegela, and L. S. Schadler, “TiO2 nanocomposites with high refractive index and transparency,” J. Mater. Chem. 21(46), 18623–18629 (2011). [CrossRef]
  29. C. Lü, Z. Cui, Z. Li, B. Yang, and J. Shen, “High refractive index thin films of ZnS/polythiourethane nanocomposites,” J. Mater. Chem. 13(3), 526–530 (2003). [CrossRef]
  30. D. Şahin and B. Ilan, “Radiative transport theory for light propagation in luminescent media,” J. Opt. Soc. Am. A 30(5), 813–820 (2013). [CrossRef] [PubMed]
  31. D. Yudovsky and L. Pilon, “Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media,” Appl. Opt. 49(31), 6072–6084 (2010). [CrossRef]
  32. A. Joshi, J. C. Rasmussen, E. M. Sevick-Muraca, T. A. Wareing, and J. McGhee, “Radiative transport-based frequency-domain fluorescence tomography,” Phys. Med. Biol. 53(8), 2069–2088 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited