OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S3 — May. 5, 2014
  • pp: A800–A811

Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

Aravind Krishnan, Snehal Das, Siva Rama Krishna, and Mohammed Zafar Ali Khan  »View Author Affiliations


Optics Express, Vol. 22, Issue S3, pp. A800-A811 (2014)
http://dx.doi.org/10.1364/OE.22.00A800


View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the simultaneous resonance from both nanoparticle layers. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in a total quantum efficiency of 62.35% for a 0.3 μm thick a-Si substrate.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.0250) Optoelectronics : Optoelectronics
(290.4020) Scattering : Mie theory
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: February 6, 2014
Manuscript Accepted: March 26, 2014
Published: April 7, 2014

Citation
Aravind Krishnan, Snehal Das, Siva Rama Krishna, and Mohammed Zafar Ali Khan, "Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells," Opt. Express 22, A800-A811 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S3-A800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008). [CrossRef] [PubMed]
  3. Y. A. Akimov and W. S. Koh, “Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells,” Plasmonics6, 155–161 (2011). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  6. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  7. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012). [CrossRef]
  8. L. Chen, W. C. H. Choy, and W. E. I. Sha, “Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles,” Appl. Phys. Lett.102, 251112 (2013). [CrossRef]
  9. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109, 073105 (2011). [CrossRef]
  10. H. Choi, J. P. Lee, S. J. Ko, J. W. Jung, H. Park, S. Yoo, O. Park, J. R. Jeong, S. Park, and J. Y. Kim, “Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells,” Nano Lett.13, 2204–2208 (2013). [CrossRef] [PubMed]
  11. C.-I. Ho, D.-J. Yeh, V.-C. Su, C.-H. Yang, P.-C. Yang, M.-Y. Pu, C.-H. Kuan, I. C. Cheng, and S.-C. Lee, “Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells,” J. Appl. Phys.112, 023113 (2012). [CrossRef]
  12. Y. Shi, X. Wang, W. Liu, T. Yang, R. Xu, and F. Yang, “Multilayer silver nanoparticles for light trapping in thin film solar cells,” J. Appl. Phys.113, 176101 (2013). [CrossRef]
  13. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett.98, 093117 (2011). [CrossRef]
  14. A. Lin, S.-M. Fu, Y.-K. Chung, S.-Y. Lai, and C.-W. Tseng, “An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles,” Opt. Lett.21, A131–A145 (2013).
  15. R. Santbergen, R. Liang, and M. Zeman, “A-Si: H solar cells with embedded silver nanoparticles,” in Photovoltaic Specialists Conference (PVSC) (2010), pp. 748.
  16. M. Xue, L. Li, B. J. T. de Villers, H. Shen, J. Zhu, Z. Yu, A. Z. Stieg, Q. Pei, B. J. Schwartz, and K. L. Wang, “Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles,” Appl. Phys. Lett.98, 253302 (2011). [CrossRef]
  17. V. Santhanam and R. P. Andres, “Microcontact printing of uniform nanoparticle arrays,” Nano Lett.441–44 (2004). [CrossRef]
  18. U. Kreibig and M. Vollme, Optical Properties of Metal Clusters (Springer-Verlag, 1995), vol. 25. [CrossRef]
  19. S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics6, 491–506 (2011). [CrossRef]
  20. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98, 011101 (2005). [CrossRef]
  21. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Express8, 581–583 (1983).
  22. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett.26, 1096–1098 (2001). [CrossRef]
  23. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett.7, 318–322 (2007). [CrossRef] [PubMed]
  24. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett.82, 3811–3813 (2003). [CrossRef]
  25. X. Deng and E. A. Schiff, Amorphous SiliconBased Solar Cells (John Wiley, 2005).
  26. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express17, 10195–10205 (2009). [CrossRef] [PubMed]
  27. S. Wu, W. Wang, K. Reinhardt, Y. Lu, and S. Chen, “Absorption enhancement in thin-film silicon solar cells by two-dimensional periodic nanopatterns,” J. Nanophotonics4, 043515 (2010). [CrossRef]
  28. Y. Zhao, F. Chen, Q. Shen, and L. Zhang, “Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure,” Opt. Express20, 11121–11136 (2012). [CrossRef] [PubMed]
  29. http://www.sspectra.com/sopra.html .
  30. D. F. Swinehart, “The Beer-Lambert law,” J. Chem. Educ.39, 333 (1962). [CrossRef]
  31. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111, 3806–3819 (2007). [CrossRef]
  32. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett.8, 581–583 (1983). [CrossRef] [PubMed]
  33. C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater.27, 1204–1211 (2005). [CrossRef]
  34. A. J. Haes, S. L. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B108, 6961–6968 (2004). [CrossRef]
  35. P. Hanarp, M. Kall, and D. S. Sutherland, “Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography,” J. Phys. Chem. B107, 5768–5772 (2003). [CrossRef]
  36. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104, 10549–10556 (2000). [CrossRef]
  37. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag.52, 397–407 (2004). [CrossRef]
  38. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009). [CrossRef]
  39. M. Sarrazin, A. Herman, and O. Deparis, “First-principle calculation of solar cell efficiency under incoherent illumination,” Opt. Express21, A616–A630 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited