OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1040–A1050

Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes

Jung-Hong Min, Myungwoo Son, Si-Young Bae, Jun-Yeob Lee, Joosun Yun, Min-Jae Maeng, Dae-Gyeon Kwon, Yongsup Park, Jong-In Shim, Moon-Ho Ham, and Dong-Seon Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue S4, pp. A1040-A1050 (2014)
http://dx.doi.org/10.1364/OE.22.0A1040


View Full Text Article

Enhanced HTML    Acrobat PDF (4996 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: March 12, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 10, 2014
Published: May 23, 2014

Citation
Jung-Hong Min, Myungwoo Son, Si-Young Bae, Jun-Yeob Lee, Joosun Yun, Min-Jae Maeng, Dae-Gyeon Kwon, Yongsup Park, Jong-In Shim, Moon-Ho Ham, and Dong-Seon Lee, "Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes," Opt. Express 22, A1040-A1050 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S4-A1040


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4), A991–A1007 (2011). [CrossRef] [PubMed]
  2. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) InGaN/GaN light-emitting diodes high-efficiency solid-state lighting,” J. Disp. Technol.9, 190–198 (2013). [CrossRef]
  3. G. Liu, J. Zhang, C. K. Tan, and N. Tansu, “Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes,” IEEE Photonics J.5(2), 2201011 (2013). [CrossRef]
  4. K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett.94(19), 191109 (2009). [CrossRef]
  5. C. K. Tan, J. Zhang, X. H. Li, G. Liu, B. O. Tayo, and N. Tansu, “First principle electronic properties of dilute-as GaNAs alloy for visible light emitters,” J. Disp. Technol.9(4), 272–279 (2013). [CrossRef]
  6. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett.97(25), 251110 (2010). [CrossRef]
  7. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology21(17), 175201 (2010). [CrossRef] [PubMed]
  8. J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology23(25), 255201 (2012). [CrossRef] [PubMed]
  9. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  12. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano2(7), 1487–1491 (2008). [CrossRef] [PubMed]
  13. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol.5(10), 722–726 (2010). [CrossRef] [PubMed]
  14. S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, “Graphene p-n vertical tunneling diodes,” ACS Nano7(6), 5168–5174 (2013). [CrossRef] [PubMed]
  15. M. S. Choi, G. H. Lee, Y. J. Yu, D. Y. Lee, S. H. Lee, P. Kim, J. Hone, and W. J. Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nat. Commun.4, 1624 (2013). [CrossRef] [PubMed]
  16. S. K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J. H. Ahn, “All graphene-based thin film transistors on flexible plastic substrates,” Nano Lett.12(7), 3472–3476 (2012). [CrossRef] [PubMed]
  17. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, “High-performance flexible graphene field effect transistors with ion gel gate dielectrics,” Nano Lett.10(9), 3464–3466 (2010). [CrossRef] [PubMed]
  18. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics6(2), 105–110 (2012). [CrossRef]
  19. N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y. J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C. J. Choi, and C. H. Hong, “Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern,” Nat. Commun.4, 1452 (2013). [CrossRef] [PubMed]
  20. K. Chung, C. H. Lee, and G. C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science330(6004), 655–657 (2010). [CrossRef] [PubMed]
  21. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High efficiency graphene solar cells by chemical doping,” Nano Lett.12(6), 2745–2750 (2012). [CrossRef] [PubMed]
  22. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  23. B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, C. R. Eddy, and J. Kim, “Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett.99(14), 143101 (2011). [CrossRef]
  24. B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, S. J. Pearton, and J. Kim, “Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes,” Appl. Phys. Lett.101(3), 031108 (2012). [CrossRef]
  25. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008). [CrossRef] [PubMed]
  26. J. M. Lee, H. Y. Jeong, K. J. Choi, and W. I. Park, “Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes,” Appl. Phys. Lett.99(4), 041115 (2011). [CrossRef]
  27. Z. Li, J. Kang, Z. Liu, C. Du, X. Lee, X. Li, L. Wang, X. Yi, H. Zhu, and G. Wang, “Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films,” AIP Adv.3(4), 042134 (2013). [CrossRef]
  28. X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett.102(16), 162102 (2013). [CrossRef]
  29. J. P. Shim, T. H. Seo, J. H. Min, C. M. Kang, E. K. Suh, and D. S. Lee, “Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes,” Appl. Phys. Lett.102(15), 151115 (2013). [CrossRef]
  30. K. Joo, S. K. Jerng, Y. S. Kim, B. Kim, S. Moon, D. Moon, G. D. Lee, Y. K. Song, S. H. Chun, and E. Yoon, “Reduction of graphene damages during the fabrication of InGaN/GaN light emitting diodes with graphene electrodes,” Nanotechnology23(42), 425302 (2012). [CrossRef] [PubMed]
  31. D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology24(7), 075202 (2013). [CrossRef] [PubMed]
  32. Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater.23(13), 1514–1518 (2011). [CrossRef] [PubMed]
  33. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett.9(12), 4359–4363 (2009). [CrossRef] [PubMed]
  34. H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, “Control of electronic structure of graphene by various dopants and their effects on a nanogenerator,” J. Am. Chem. Soc.132(44), 15603–15609 (2010). [CrossRef] [PubMed]
  35. X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett.78(21), 3337–3339 (2001). [CrossRef]
  36. Z. Ni, Y. Wang, T. Yu, and Z. Shen, “Raman spectroscopy and imaging of graphene,” Nano Res.1(4), 273–291 (2008). [CrossRef]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  38. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett.68(19), 2699–2701 (1996). [CrossRef]
  39. T. H. Seo, K. J. Lee, A. H. Park, C. H. Hong, E. K. Suh, S. J. Chae, Y. H. Lee, T. V. Cuong, V. H. Pham, J. S. Chung, E. J. Kim, and S. R. Jeon, “Enhanced light output power of near UV light emitting diodes with graphene / indium tin oxide nanodot nodes for transparent and current spreading electrode,” Opt. Express19(23), 23111–23117 (2011). [CrossRef] [PubMed]
  40. X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes,” Appl. Phys. Lett.102(16), 162102 (2013). [CrossRef]
  41. J. Yun, J. I. Shim, and D. S. Shin, “Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis,” Semicond. Sci. Technol.28(8), 085001 (2013). [CrossRef]
  42. J. Yun, D. P. Han, J. I. Shim, and D. S. Shin, “Three-dimensional analysis of temperature distributions based on circuit modeling of light-emitting diodes,” IEEE Trans. Electron. Dev.59(6), 1799–1802 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited